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ABSTRACT
The data plane verification of networks in hyperscale environ-

ments is challenging due to the complexity and size of modern
networks. In this paper, we introduce Medusa, a novel verifier that
efficiently analyzes large data plane models using parallel process-
ing on multi-core CPUs. First, we propose a new data structure
called RANGESET, which overcomes the parallelism limitations of
existing popular data structures such as Binary Decision Diagrams
(BDD) used in data plane verifiers. Next, we leverage multi-core
processing by dividing the network into distinct groups and assign-
ing each group to a separate thread for computation. The results
are then integrated for comprehensive verification. By optimizing
the use of multi-core systems, we enhance computational efficiency
and accelerate the verification process. Experimental results demon-
strate thatMedusa outperforms existing tools in terms of speed and
memory. For instance, in a network with O(10K) devices and O(1M)
forwarding rules, Medusa can detect loops in approximately 5 sec-
onds, outperforming other Data Plane Verifiers (DPVs) where some
cannot model and analyze the network. Moreover, in networks
that we could compare with other state-of-the-art DPVs, Medusa
provides a substantial improvement, with speedups up to 600X,
4000X, and 800X compared to alternatives like Flash, APKeep, and
Tulkun, respectively.

CCS CONCEPTS
• Networks→ Network reliability; • Theory of computation
→ Logic and verification.

KEYWORDS
Data Plane Verification, Parallelization, Hyperscale Network

ACM Reference Format:
Sisi Wen, Anubhavnidhi Abhashkumar, Chenyang Zhao, and Weirong
Jiang. 2024. Scaling Data Plane Verification via Parallelization. In The 8th
Asia-Pacific Workshop on Networking (APNet 2024), August 3–4, 2024, Syd-
ney, Australia. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3663408.3663420

∗Corresponding author
†Work done while interning at ByteDance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APNet 2024, August 3–4, 2024, Sydney, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1758-1/24/08
https://doi.org/10.1145/3663408.3663420

1 INTRODUCTION
In recent years, the network infrastructure of multiple global ser-
vice providers [4, 6] has undergone a rapid expansion resulting in
hyperscale and heterogeneous networks consisting of large-scale
data centers. To model and analyze the data plane of such networks,
Data Plane Verifiers (DPVs) have become prevalent [11, 14].

However, as the size of the networks increases, so do the size of
the network models, which pose significant challenges for existing
state-of-the-art verifiers. For example, existing verifiers often face
limitations when dealing with large-scale production scenarios
consisting of millions of routes and thousands of devices. In our
experience, these verifiers failed during attempts to analyze our
network and terminated with an "out of memory" exception due
to the sheer magnitude of the network. This highlights the urgent
need for verifiers that can handle the ever-increasing scale and
complexity of modern networks.

Recent DPV tools such as Delta-net [13] and APKeep [20] can
achieve sub-millisecond per-rule verification by leveraging the
equivalence class (EC) idea to partition the packet space. How-
ever, these tools still perform poorly when analyzing hyperscale
networks due to their performance and/or memory limitations. For
example, although Delta-net achieves linear performance due to
its innovative data structure called Atom, its unmerged ECs lead
to greedy memory usage. Consider an IPv6 network consisting
of 10K devices with an average of 20 ports per device and 100K
prefixes, the memory usage can reach 300 GB. On the other hand,
APKeep aims to minimize the number of ECs, but many repeated
predicate merge and split operations degrade its performance. Also,
despite APKeep’s efforts to limit the number of ECs, the high num-
ber (e.g. 80K in our networks) that still exist in complex networks
can overwhelm a single process.

To address this limitation, researchers have explored dividing
the network model and harnessing the power of parallel processing.
This approach is a promising direction as it can enable distributed
DPV to handle large, complex networks more effectively. Flash [11]
distributes the verification workload across different subspace veri-
fiers. It also solves the problem of redundant computation in burst
update scenarios for large networks, but its continuation of the
EC-based idea from previous work and the use of BDD (Binary
Decision Diagram) limits its parallelization scheme to uneven sub-
space partitioning. Tulkun [18] transforms verification tasks into a
counting problem on a Directed Acyclic Graph (called DPVNet) and
decomposes global verification into lightweight on-device tasks.
However, the computational performance of DPVNet, the precon-
ditioner of its DPV model, severely limits the deployment of this
algorithm in real networks.
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Finally, it is important to note that many recent DPVs [11, 18, 20]
that achieve high performance are designed for incremental verifi-
cation and are not suitable for modeling a network from scratch,
i.e., for clean slate verification. In a real production environment,
storing models of different networks as long-running processes may
be impractical due to the significant amount of resources required.
This could lead to a situation where it becomes necessary to give
up the resources and remodel the network from scratch, similar to
what clean slate verifiers [7, 17] do.

To address these limitations, we propose a new DPV called
Medusa. Medusa leverages multi-core processing by dividing the
network into distinct groups. It introduces a new data structure
called RANGESET to model the IP address space of the network,
which enables parallelization of creation and analysis/operations
for different network submodels. In the first step, Medusa divides
the network into groups and builds the Trie data structure con-
currently to identify the overlap of IP address space within each
group. Then, Medusa concurrently traverses the Trie to compute
the RANGESETs for each submodel. With the obtained RANGESET
formula, range-based operations are performed to determine the
transmission of RANGESETs from one node to another within a
RANGESET forwarding graph. Finally, the IP packet transmission
is simulated by traversing the graph using a single thread.

In our experiments, we compared Medusa against Tulkun, Flash,
and APKeep for public datasets and large-scale private datasets from
production data centers. We show that Medusa can detect loops in
a network containing O(10K) devices and O(1M) forwarding rules
in just about 5 seconds, surpassing other DPVs where some cannot
model and analyze the network. Additionally, in networks where
we compared Medusa with other DPVs, it provides a remarkable
improvement with up to 600X, 4000X, and 800X speedups compared
to alternatives like Flash, APKeep, and Tulkun, respectively.

2 CHALLENGES
2.1 Dividing the network model
Analyzing a large DPV model in one shot may be impractical due
to the size of the model. An alternative approach would be to divide
the network model into submodels and analyze each of them in
parallel. There are two possible methods to divide the network
model [19]: dividing the IP address space and dividing the network
into different groups based on devices.

Dividing the IP space has limitations. The rapid growth of equiv-
alence classes (ECs) as the network grows in size cannot be curbed,
leading to greater memory requirements. Additionally, prefixes
belonging to the same EC may not be merged if they are divided
into different groups. For instance, a tool such as Flash that uses
this approach requires four to five times more memory than other
DPVs such as APKeep (§5). It is also challenging to determine a
uniform cutoff point to divide the routing tables properly, given the
potential range of routing tables on a device from O(1K) to O(100K).

Dividing the network into subgroups based on devices presents
several advantages. It not only reduces memory usage and the num-
ber of ECs generated, but it also enables prefixes to merge within
smaller networks that they might not merge throughout the entire
network. Since the network is already divided into different groups
based on network features, it is easy to divide the network into

subgroups, analyze them separately, and then merge the analyses
in the final step.

However, merging analyses from different groups can bring
its own challenges. For instance, correlating the ECs computed
from and within each group can be complicated in the merge of
analysis results. Additionally, policy alignment between different
subgroups may be necessary to ensure consistent behavior across
the entire network. Despite these challenges, dividing the network
into subgroups can provide an efficient way to analyze a large DPV
model.

2.2 Data structure for parallelism
Many verifiers, such as APKeep [20], Flash [11], and Batfish [10],
use Binary Decision Diagrams (BDDs) to model the network due to
their simplicity, memory efficiency, and ability to express complex
forwarding rules concisely. However, BDDs were not originally
tailored for parallelism due to maintaining a global hash table,
which becomes a bottleneck when multiple threads use BDD.

Attempts to develop parallel BDDs have been made, including
mutex-based structures [16], thread-pools and lock-free data struc-
tures [8], and on-demand thread creation [9]. However, these meth-
ods suffer from various issues, including mutex locking overhead,
deadlocks, and thread scheduling overhead, respectively.

Existing general-purpose BDD packages aim to speed up a sin-
gle BDD operation but not the overall throughput needed to han-
dle a large number of BDD operations. Due to the large number
of BDD operations involved in DPV, the aforementioned meth-
ods may not be suitable. Nanobdd [12] claims to be the first-ever
high-performance thread-safe BDD library, but our experiments
show that its performance is worse than popular BDD libraries like
BuDDY [15], which do not support multiple threads. We randomly
generate AND/OR computational tasks for predicates on BDD for
Nanobdd and distribute them evenly across varying numbers of
threads to execute. However, increasing the number of threads from
1 to 20 leads to a longer completion time (of 2 to 10 seconds), since
the increased number of threads creates lock contention, thereby
causing a degradation in performance. While it is possible to use
multiple processes/threads to create multiple hash tables for paral-
lelism, BDDs between different processes/threads cannot operate
directly, and extra costs must be paid to achieve a certain mapping
between BDD of different processes/threads.

3 RANGESET
We propose a new data structure called RANGESET to represent IP
address space. The RANGESET (RS) object represents a set of ordered
pairs of integers. Each pair consists of a lower-bound integer, de-
noted as 𝐿𝐵𝑖 , and an upper-bound integer, denoted as𝑈𝐵𝑖 , for the
𝑖-th pair in the RS. The RS can be represented as a union of ordered
pairs from 𝑖 = 1 to 𝑛, where 𝑛 is the total number of ordered pairs in
the RS. The entries in the RS are sorted based on the lower-bound.

𝑅𝐴𝑁𝐺𝐸𝑆𝐸𝑇 =

𝑛⋃
𝑖=1
(𝐿𝐵𝑖 ,𝑈 𝐵𝑖 ) (1)

We can represent any IP space using a RS. For example, the
IP space 0.0.0.8/29 can be represented as the RS {(8, 15)}, which
includes the IP addresses ranging from 0.0.0.8 to 0.0.0.15. Similarly,
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the IP space 0.0.0.8/29−0.0.0.13/32 can be represented using the RS
{(8, 12), (14, 15)}. This RS includes all IP addresses in the 0.0.0.8/29
subnet except for 0.0.0.13.

The condition for a valid RS is as follows:

𝐿𝐵𝑖 ≤ 𝑈𝐵𝑖 and 𝑈𝐵𝑖 + 1 < 𝐿𝐵𝑖+1 (2)

For instance, {(1, 2), (4, 5)} is a valid RS, while {(1, 2), (3, 4)}
is not. A RS is considered a false RS if there are no pairs in it.
Conversely, a RS is considered a true RS if there is only one pair,
and the lower bound is the minimum and the upper bound is the
maximum. For example, {(0, 232 − 1)} is a true RS that represents
the entire IPv4 address space.

Similar to other DPVs, both model creation and analysis incur
𝐴𝑁𝐷 , 𝑂𝑅, and 𝑁𝑂𝑇 operations. Note, only valid RS can partake in
these operations, all of whichmust also return valid RS. Due to space
constraint, we will provide a brief overview of these operations.
The 𝐴𝑁𝐷 operation is computed by iterating through both input
ranges, comparing the lower and upper bounds of each range pair.
If there is an overlap, the function computes the intersection and
adds it to the result. E.g. {(0, 5), (10, 15)} AND {(3, 7), (12, 18)} =
{(3, 5), (12, 15)}.

The 𝑂𝑅 operation combines and sorts all the entries in both the
RS. It then pops the first pair from the sorted range to initialize the
current pair. The function iterates through the combined sorted
range, comparing the upper and lower bounds of the current pair
to the next pair in the sorted range to determine whether a union
can be formed. If a union can be formed, the function updates the
upper bound of the current pair and continues iterating through
the sorted range. On the other hand, if a union cannot be formed,
the function adds the current pair to the result and iterates forward.
E.g. {(0, 5), (10, 15)} OR {(3, 7), (12, 18)} = {(0, 7), (10, 18)}. Both
these operations can be computed in 𝑂 (𝑛 +𝑚), where 𝑛 and 𝑚

correspond to the size of the RS.
The𝑁𝑂𝑇 operation computes the complement by iterating through

each pair in the input range. For each gap between pairs in the input
range, it pushes a new pair. The lower bound of each gap pair is
equal to the upper bound of the previous pair plus one, and the
upper bound of each gap pair is equal to the lower bound of the next
pair minus one. E.g. NOT {(0, 5), (10, 15)} = {(6, 9), (16, 232 − 1)}.
NOT operations can be computed in 𝑂 (𝑛).

It is worth noting that both Delta-net’s Atom and RS are data
structures used to partition the IP space, but there is a significant dif-
ference between the two. Atom ensures global uniqueness of its data
throughout the network model, which restricts its parallelization
capability. On the other hand, RS uses equivalence classes to pre-
vent IP space fragmentation without enforcing global uniqueness,
making it a more scalable and parallelizable option for deployment.

4 DESIGN
A highly effective strategy to optimize the utilization of multi-core
CPUs for DPV is to partition the network into groups assigned
to specific threads. Each thread is responsible for computing the
RANGESET forwarded by each device in the group to its neighbors,
leveraging the parallel processing capabilities of modern multi-core
systems. Once each thread has completed its computations, the
results are integrated to facilitate the verification process, promote

computational efficiency, and maximize parallelization. This ap-
proach harnesses the full power of parallel processing provided by
these systems and enables efficient utilization of multiple CPUs,
significantly speeding up the verification process.

4.1 Design Goal
There is an intuitive idea to compute the RANGESETs forwarded from
a device to its neighbors. We first sort each device’s routing rules
by priority and iterate through them. For each rule, we subtract
the current rule’s RS from the RS of all other ports and merge the
current rule’s RS into the specified port’s RS. This helps calculate
the RS forwarded from each port of each device. However, this
approach has several redundant computations. Firstly, there could
be duplicated RS operations on different devices, such as 𝑃0 − 𝑃1
happening on both device B and C simultaneously in Figure 1.
Secondly, there could be redundancies in determining overlaps
between different RS. To reduce the redundant computations as
mentioned earlier, we suggest a new and efficient approach using
tries.

We explain the method combined with an end to end example
in Figure 1. Note that the first three steps will be paralleleized and
only the last step is single threaded. The network has four prefixes
- 𝑃0, 𝑃1, 𝑃2, and 𝑃3 - where 𝑃0 is the default route, represented by
0.0.0.0/0 or :: /0. These prefixes follow a hierarchical structure, with
𝑃3 ⊂ 𝑃2 ⊂ 𝑃1 ⊂ 𝑃0. Additionally, these prefixes have a priority
ranking, 𝑃3.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 > 𝑃2.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 > 𝑃1.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 > 𝑃0.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦.
The routing table for each device in the network is shown in Figure 1.
To perform network verification efficiently, we can initially divide
the network nodes into groups. For example, node A can be divided
into group1, and nodes B and C can be divided into group2. Each
group will have its own thread for computation.

4.2 Build Trie
We adopt a trie-based approach to identify all the overlap and prior-
ity in the network. This trie is constructed based on the prefixes in
the network. Each trie node comprises two parts: the prefix and the
forwarding behavior of all devices for that prefix. The forwarding
behavior specifies how traffic is forwarded for the prefix from each
device to its neighbors, which is obtained from the routing table.
For instance, let’s consider the trie node {𝑃1, [(𝐵 : 𝐶), (𝐶 : 𝐴)]} in
group 2 which is made up of separate rules on devices B and C. This
indicates that 𝑃1 is forwarded on device B to neighbor C, and on
device C to neighbor A. The prefix space of a child node is always
a subset of its parent node. We can create a distinct trie for each
network group. Notably, every device has a default rule to drop all
packets, which is represented by 𝑃0 in this example. In this way,
we can avoid any redundant overlap judgments when traversing
the trie using a Depth-First Search (DFS) method.

4.3 Compute RANGESET
To obtain all RANGESETs, we traverse the trie using DFS. We can
illustrate this with an example that revolves around the traversal
of the group2’s trie.

To simplify the explanation, in Figure 1B, we use forwarding ac-
tion tables for each node to demonstrate how the RS splits based on
changes in forwarding as it passes through that trie node. Initially,
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Figure 1: End to end example on a simple three device two group network.

traversing the trie node P0 shows that every device adheres to a
default rule that necessitates dropping all packets. As the traversal
proceeds to the trie node P1, we detect a change in the behavior
relative to the default rules. Since the prefix P1 is longer than P0, it
takes on a higher priority. Thus, the RS splits into two P0 - P1 and
P1. Finally, we reach the leaf trie node P2 where, again, a change
in behavior for a more specific prefix P2 is detected. Thus, P1 is
split into P1 - P2 and P2. Note that if P2 had behaved the same as
P1, there would have been no partition change. This is similar to
APKeep’s points about merging and splitting ECs. In this way, we
can reduce some of the same RS operations. For example, there is
only one 𝑃0 − 𝑃1 operation.

After obtaining the formula of the final RS, we can perform range-
based operations to determine which packets are transmitted from
one node to another. For example, let’s assume that node A forwards
packets in the range P1-P2+P3 to node B, where P1, P2, and P3 are
also ranges. This operation can be symbolically represented as:
𝑂𝑅(𝐴𝑁𝐷 (𝑃1, 𝑁𝑂𝑇 (𝑃2)), 𝑃3). By evaluating this formula, we can
obtain the specific RS or IP ranges that are transmitted from node
A to B. For example, the output of the operation mentioned above
could be the RS {(LB(P1), LB(P2)-1), (LB(P3), UB(P3)), (UB(P2)+1,
UB(P1))}. These are depicted as the edge weights of the RS graph.

4.4 Analyze the model
Note that all the aforementioned steps can be performed in parallel
for each group. For edges that cross different groups, the group that
contains the source node is responsible for that edge. The final step
involves traversing the RS graph to simulate packet forwarding. The
pseudo-code for traversing the RS graph is provided in Algorithm 1.

Although we mainly focus on identifying loops in this pseudo-code,
we have extended it to identify all-all pair reachability (i.e., IP spaces
reachable between all nodes), blackholes, etc.

Initially, we traverse the graph using DFS from each node using
an RS that represents the entire IP space and an empty visited node
set (lines 2-3). During DFS, if the node has been visited previously,
the algorithm detects a loop (lines 6-7) and returns. Otherwise,
it moves to all neighbors of the current node (lines 9-13). Before
moving forward, the algorithm computes the corresponding RS
that needs to be forwarded on that edge using the 𝑔𝑒𝑡_𝑅𝑆 function
(line 10). Then, it computes the intersection of the current RS that
was forwarded to this node with this transferred RS using the
AND operator (line 11). Finally, the intersection is forwarded to the
neighbor (lines 12-13).

To illustrate the traversal process, let’s consider a traversal start-
ing from node A inwhich it initially carries the generic RS represent-
ing the entire IP address space of the network, denoted by {(LB(P0),
UB(P0))}. Node A applies the AND operation with the 𝑒𝑑𝑔𝑒_𝑅𝑆𝐴−>𝐵
to obtain a resulting RS that it then transfers to node B. Node B, in
turn, receives the RS {(LB(P1), LB(P2)-1), (LB(P3), UB(P3)), (UB(P2)+1,
UB(P1))} from node A and transfers it to node C. After applying
the AND operations with the 𝑒𝑑𝑔𝑒_𝑅𝑆𝐵−>𝐶 , node C receives the
same RS (i.e. AND with {(LB(P1), UB(P1))} does not change the RS).
Finally, after applying the AND operation with the 𝑒𝑑𝑔𝑒_𝑅𝑆𝐶−>𝐴
(i.e. {(LB(P1), LB(P2)-1), (UB(P2)+1, UB(P1))}), node A receives the RS
{(LB(P1), LB(P2)-1), (UB(P2)+1, UB(P1))}. As node A is visited again,
this algorithm detects a loop in the network.
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Algorithm 1: RS graph traversal
1 procedure RSTraverse()
2 for 𝑣 ∈ 𝑉 do
3 DFS(𝑣 , 𝑎𝑙𝑙_𝑅𝑆 , 𝑒𝑚𝑝𝑡𝑦_𝑠𝑒𝑡 );
4 Input: 𝑣 : current node, 𝑅𝑆 : current RANGESET, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 :

visited nodes;
5 procedure DFS(𝑣 , 𝑅𝑆 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
6 if 𝑣 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then

// Loop detected

7 return;
8 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 .add(𝑣);
9 for 𝑛 ∈ 𝑣 .𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
10 𝑒𝑑𝑔𝑒_𝑅𝑆 ← 𝑔𝑒𝑡_𝑅𝑆 (𝑣, 𝑛);
11 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑟𝑒𝑑_𝑅𝑆 ← 𝑅𝑆 𝐴𝑁𝐷 𝑒𝑑𝑔𝑒_𝑅𝑆 ;
12 if 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑟𝑒𝑑_𝑅𝑆 ≠ 𝑓 𝑎𝑙𝑠𝑒 then
13 DFS(𝑛, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑟𝑒𝑑_𝑅𝑆 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑);
14 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 .remove(𝑣);

4.5 Optimization
To improve Medusa’s performance, we implemented several op-
timizations. One of these optimizations, which had a significant
impact, was related to computing the RANGESET formulas. Once
we traversed the trie, we obtained a formula in the form of

𝑛⋃
𝑖=1
(𝑔𝑒𝑛𝑒𝑟𝑖𝑐_𝑝𝑟𝑒 𝑓 𝑖𝑥𝑖 −

𝑚⋃
𝑗=1

𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐_𝑝𝑟𝑒 𝑓 𝑖𝑥𝑖 𝑗 )

wherein the 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐_𝑝𝑟𝑒 𝑓 𝑖𝑥𝑖 𝑗 is a subset of 𝑔𝑒𝑛𝑒𝑟𝑖𝑐_𝑝𝑟𝑒 𝑓 𝑖𝑥𝑖 . To
speed up the computation, we use batch union instead of single
union. Essentially, there are two options to compute the union of
multiple RANGESETs from 𝑅1 to 𝑅𝑁 . The naive method, which
involves multiple single unions, i.e., performing an iterative OR
operation over the RANGESETs with time complexity of 𝑂 (𝑛𝑁 ),
like OR(𝑅1, OR(𝑅2, ...OR(𝑅𝑁−1, 𝑅𝑁 ))), where 𝑁 refers to
the number of RS and 𝑛 pertains to the total number of ordered
pairs in the RS (as mentioned in §3). The alternative is to do Batch
Union, which involves computing the union at once, like OR(𝑅1,𝑅2,
...,𝑅𝑁 ), using a technique similar to merging sorted lists. The
time complexity is 𝑂 (𝑛𝑙𝑜𝑔𝑛), where 𝑛 is again the total number
of pairs in these RS. Generally, batch union is more efficient than
multiple single unions because 𝑙𝑜𝑔𝑛 < 𝑁 (§5).

5 EVALUATION
We implemented Medusa in C++ (2.2K lines of code). To evaluate
its performance, we utilized seven datasets (Table 1): three popular
public datasets (Airtel [3], I2 [1], and Stanford [2]), along with four
datasets sourced from our private data centers (PDC).

We evaluated Medusa against three state-of-the-art data plane
verifiers: APKeep [20], Flash [11], and Tulkun [18]. For Flash and
APKeep, we utilized the open-source implementations provided
by Flash [5]. As for Tulkun, we used its open-source implementa-
tion directly. The open-source version of Flash does not support
distributed deployment, so we tested it on a single server. This
open-source version also only analyzes one subspace and does not
fully implement the analysis of all subspaces. In order to achieve

Dataset Nodes Links Forwarding Rules
Airtel O(10) O(10) O(100K)
I2 O(1) O(10) O(10K)

Stanford O(10) O(10) O(1K)
PDC1 O(10) O(100) O(100K)
PDC2 O(100) O(1K) O(100K)
PDC3 O(1K) O(10K) O(1M)
PDC4 O(10K) O(100K) O(1M)

Table 1: Dataset statistics. K and M stands for thousands and
millions.

parallelism, we divided the subspace based on the first 6 bits of
the IP addresses in Flash’s experiments, which results in up to 64
theoretical threads. As a result, we executed all experiments for
both Flash and Medusa using 64 threads.

To create the data plane models for all verifiers, we included all
IPv4 rules in each dataset. After creating the models, we instructed
the verifiers to check for loop-free invariants in the networks. How-
ever, since Tulkun’s open-source implementation cannot perform
loop-free verification, we replaced it by verifying all-pair reachabil-
ity instead. Note that Tulkun’s structure is more suitable for all-pair
reachability. Also, since loop-free regular expressions are more
complex than all-pair reachability, we can deduce that Tulkun’s
loop-free computation time will likely be slower.

All experiments were conducted on a server running on an Intel
Xeon Platinum 8336C processor with 128 cores and 512GB memory,
clocked at 3.5GHz We used two primary metrics for performance
evaluation: runtime, which is the time required to create and analyze
the network model, and memory, which denotes the size of the
network model. We took the average of five runs for both metrics
and timed out all experiments after an hour. We also use speedup
and memory reduction to refer to the performance factor by which
Medusa surpasses other tools and the factor of memory that it saves
compared to other tools, respectively.

Tool Runtime in seconds (speedup)
Flash APKeep Tulkun Medusa

Airtel 2.76 (1.8) 32.99 (22.2) 1206 (814.8) 1.48
I2 0.55 (2.7) 5.54 (27.7) 1.46 (7.3) 0.20

Stanford 0.25 (25) 1.00 (100) 1.63 (163) 0.01
PDC1 1.13 (11.3) 14.73 (147.3) 4.01 (40.1) 0.10
PDC2 6.26 (20.2) 243.24 (784.6) TO 0.31
PDC3 18.89 (48.4) 1629.83 (4179) TO 0.39
PDC4 3002 (613.9) TO TO 4.89

Table 2: Runtime comparison. TO means the tool timed out
after running for an hour.

As indicated in Table 2, Medusa outperforms Flash, APKeep, and
Tulkun by a significant margin. Medusa’s verification time is the
lowest among all network topologies, offering up to 600X, 4000X,
and 800X speedup compared to Flash, APKeep, and Tulkun, respec-
tively. Furthermore,Medusa successfully completed the verification
process for all network topologies without encountering any time-
outs, which is a prevalent issue with some existing state-of-the-art
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Tool Memory in GB (memory reduction)
Flash APKeep Tulkun Medusa

Airtel 4.23 (4.45) 1.26 (1.32) 3.91 (4.11) 0.95
I2 0.99 (5.82) 0.30 (1.76) 0.68 (4) 0.17

Stanford 1.01 (101) 0.11 (11) 0.62 (62) 0.01
PDC1 2.04 (10.2) 0.48 (2.4) 1.54 (7.7) 0.20
PDC2 5.56 (10.9) 1.16 (2.27) TO 0.51
PDC3 7.10 (8.98) 2.93 (3.7) TO 0.79
PDC4 93.51 (4.56) TO TO 20.49

Table 3: Memory comparison.

tools. In summary, when compared to other tools, Medusa is faster
and more efficient for network verification.

As mentioned in §1, Tulkun uses DPVNet as a DAG for verifica-
tion. However, as the network topology grows in size, the computa-
tional time required for Tulkun also increases significantly. This is
because of the nature of DPVNet, which involves enumerating all
the paths based on the topology and verified policies. Also, to the
best of our knowledge, DPVNet creation is not parallelized, which
further exacerbates the computation time. Thus, it is crucial to con-
sider DPVNet computation time when calculating the modeling
time of the verifier. On average, DPVNet computation accounted
for 65% of the total runtime on the four networks that we were
able to run Tulkun on. For example, DPVNet computation took 2.3
seconds out of 4.01 seconds runtime for PDC1, which represents a
significant overhead for real-time verification.

As indicated in Table 3, the memory used by Medusa model is
also significantly lower than other tools. It is important to note that
BDD libraries use cache to optimize computation speed. As a result,
DPV tools that rely on BDD initialization for verification will have
an unavoidable memory overhead.

We also evaluated the effect of batch union on the same dataset.
Our results show that, on average, 𝑙𝑜𝑔𝑛 is two orders of magnitude
less than 𝑁 . Specifically, we found that the value of 𝑁 is 12 times
(small network) to 277 times (large network) greater than the value
of 𝑙𝑜𝑔𝑛.

6 FUTUREWORK
In our current approach, we divide the network into different groups
based on device regions, such as grouping devices by city, state,
etc. However, this approach may not be ideal as devices may not
be evenly distributed across different regions. Therefore, we aim
to identify the optimal method of network division by exploring
different approaches.

We observed that increasing the number of threads did not result
in a significant improvement beyond a certain point, although the
exact point at which performance plateaus may differ depending
on the input network. This is because the final step of traversing
the graph remains single-threaded, requiring the combination of
subgraphs before traversal. This remains a significant bottleneck
forMedusa. As future work, we aim to explore further optimizations
for parallelization of the final stage and the whole tool in general
to enhance the performance of Medusa, allowing for better scaling
with an increase in the number of threads.

Although group-based parallelization was our main focus in this
paper, we are also exploring other parallelization techniques, such

as IP address space parallelization. To be precise, we are examining
whether or not we can effectively integrate multiple parallelization
techniques.

Our verifier is a clean slate verifier, which means we need to
remodel the network from scratch every time we do an analysis. To
update the verifier incrementally, we can explore incremental veri-
fication techniques that update only the relevant group. Currently,
we only focus on the destination IP field when forwarding packets.
However, in reality, the data plane also includes ACLs dependent
on other fields such as source and destination ports, etc. Addition-
ally, features like tunneling include actions such as encapsulation,
decapsulation, and header rewriting. We are exploring ways to
improve our approach to incorporate these features.

Furthermore, while we are currently focusing on parallelizing
specific components across different threads within the same ma-
chine, we may need to investigate how to conduct this parallel
analysis across multiple machines as the network grows larger.
However, this poses challenges such as how to reduce the commu-
nication burden across multiple servers during final result analysis.

An alternative direction is to enhance the parallelization capa-
bilities of BDDs even further. But, the major challenge would be to
correlate BDDs representing different ECs across multiple groups.
Acknowledgements.Wewould also like to thank our colleagues Ji-
awei Chen, Xu Liu, and the anonymous reviewers for their valuable
insights and feedback.
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