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Abstract
In large-scale data center networks, answering network di-
agnosis queries from users still heavily rely on manual on-
call services. A widespread scenario is when network users
query whether any network issue is causing problems with
their services/applications. However, this approach requires
extensive experience and considerable efforts from network
engineers who must repeatedly go through lots of monitoring
dashboards and logs. It is notoriously slow, error-prone, and
costly. We ask: is this the right solution, given the state of the
art in network intelligence?

To answer, we first extensively study thousands of real
network diagnosis cases and provide insights into how to
address these issues more efficiently. Then we propose an
AI enabled diagnosis framework and instantiate it in a task-
oriented dialogue based diagnosis system, or colloquially, a
chatbot, called NETASSISTANT. It accepts questions in nat-
ural language and performs proper diagnosis workflows in
a timely manner. NETASSISTANT has been deployed and
running in the data centers of our company for more than
three years with hundreds of usages every day. We show it
significantly decreases the number and duration of human
involved oncalls. We share our experience on how to make it
reliable and trustworthy and showcase how it helps solve real
production issues efficiently.

1 Introduction

Providing high visibility is increasingly challenging in mod-
ern hyper-scale and heterogeneous data center networks. One
fundamental and essential service is handling network di-
agnosis queries from network users. As networks continue
to grow in scale, speed, and link utilization, it has become
increasingly challenging for human operators to manually
monitor and diagnose network issues. Traditional approaches
to network management, which rely on human operators look-
ing at a screen of data to understand the network state, are
no longer sufficient. Instead, network management solutions

have become more automated than before, with a shift towards
software-defined networking (SDN) and automated processes
that dynamically drill down based on current conditions and
even automatically react to network events. These queries
normally come from cloud applications/services generating
anomalies which are likely caused by network incidents. For
instance, colleagues from the advertisement recommendation
team observe network timeout exceptions that lead to the
crash of their machine learning jobs. They are eager to ascer-
tain whether it is a network issue and the scope and severity
of the issue so that they can make business decisions such as
waiting for auto-recover, changing to another backup comput-
ing cluster, or temporarily downgrading the recommendation
algorithms (e.g., using a simple client side algorithm instead
of the server side one).

However, handling these network diagnosis queries has
always been time consuming and labor intensive work in large
data center networks. The reason behind this comes from both
the network user side and the network engineer side. From the
perspective of network users, limited by the network domain
knowledge and necessary permissions, they normally lack a
network-wide view and are not able to access a variety of
network monitoring primitives. As a result, network users
often need to turn to network engineers for manual assistance.
We have a user behavior study to investigate what exactly
the needs of network users are in their daily work (Section
2.1). From the perspective of network engineers, they have a
variety of network monitoring primitives to monitor, a large
amount of monitoring data to process, and too many small
but not negligible network incidents to investigate (Section
2.2). As a consequence, extracting useful information from
the enormous data and replying to network users becomes
highly tedious and time consuming work, and highly relies on
the expertise of each network engineer. Therefore, we argue
that there is a gap between the network diagnosis needs of
network users and network monitoring primitives in big
data center networks. Network engineers are working hard
to bridge the gap with their extensive experience and expertise.
And big cloud companies have a considerable number of
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Figure 1: Level of Abstraction in NETASSISTANT

network engineers [11] who take turns to undertake the oncall
services.

Researchers have built several querying [13, 15, 19] and
diagnosis [12, 16, 17, 20, 23, 25, 28] tools to bridge part of the
gap. However, building such automation tools has limited ef-
fectiveness since they are ad-hoc, not scalable, and introduce
an extra learning curve to network users. Network users may
not know these tools, or are not able/willing to learn them.
Consequently, we believe a comprehensive solution should
be general-purpose, query format independent, easy to lever-
age the O&M (operation and maintenance) experience from
network engineers, and comply with performance and data
scale requirements.

Inspired by the technique of task-oriented dialogue sys-
tems in the NLP (natural language processing) domain and
the top-down idea in network telemetry [24], we come up
with an idea to build a virtual assistant (chatbot) to take the
networking related queries in natural language and leverage
the experience from network engineers to perform proper di-
agnosis functions. While building a dialogue system/chatbot
to help users/customers is already a common practice in many
companies ( [1, 3, 4, 10]), it is not trivial in the data center
networking domain due to the requirement of high accuracy,
scalability and efficiency. As shown in Figure 1, we divide the
objectives into three levels of needs. Network users have the
chat needs from the chat layer. Then the chat layer requires
appropriate diagnosis functions from the workflow layer. The
workflow layer needs efficient data retrieval from the network
monitoring primitives. Conversely, each layer provides a cor-
responding abstraction to its upper layer. We notice that each
layer encounters unique challenges as follows:

• First, networking diagnosis requires precise description
and input, while a considerable proportion of queries
from network users are not clear enough (Section 2.1).
Therefore, it is hard to build a natural language under-
standing module since any misunderstanding or miscon-
figuration may cause immeasurable losses.

• Second, building suitable and high-quality methodolo-
gies for different diagnosis cases is challenging. We

argue that network engineers have the most say on how
to select and customize the diagnosis functions based
on their experience and expertise. How to automatically
leverage the know-how from network engineers and con-
vert it to executable workflows is not trivial.

• Third, the performance bottleneck of a chat system for
network questions mainly comes from the retrieval of un-
derlying data. Considering the various types of network
monitoring primitives and the huge volume of moni-
toring data, we need a comprehensive solution for data
storage and data retrieval.

We propose our solution, NETASSISTANT, which leverages
the technique of task-oriented dialogue systems to provide
virtual assistant services to network users. NETASSISTANT
takes the queries from network users in natural language, se-
lects appropriate processing workflows that are created by
network engineers, and responds to the users in a timely man-
ner. NETASSISTANT contains three novel functional modules
to achieve the three layers of abstraction and address the chal-
lenges. NETASSISTANT is deployed on top of a large scale
distributed network monitoring infrastructure and deals with
terabyte level of monitoring data every day.

In summary, we make the following contributions:
• We provide a user study of network users, a quantitative

study of network incidents, and monitoring primitives in
our production network.

• We propose an end-to-end distributed system, NETAS-
SISTANT, which can make use of the O&M experience
of network engineers to answer network diagnosis ques-
tions from network users. NETASSISTANT has been de-
ployed and iterated in our production network for over
three years and has tens of thousands of usage.

• We share our experience and lessons learned in customer
service on the front line for network users.

We construct our paper as follows. Section 2 provides a
network user behavior study, a quantitative study of network
incidents and monitoring primitives, and motivates this paper.
Section 3 describes the system design of NETASSISTANT.
Section 4 provides deployment details, case studies, and eval-
uation results. In Section 5, We share interesting lessons we
have learned from our experience of providing network diag-
nosis and troubleshooting functions. Section 6 and 7 describe
related work and conclude the paper.

2 Measurement Study and Motivation

A typical interaction between a network user and a network
engineer is that the network user raises oncall questions while
the network engineer on duty answers them. The oncall pro-
cess is time consuming and labor intensive work, and this
paper aims to provide a comprehensive solution to help both
network users and engineers. Thus, the first step is to under-
stand the needs of network users and the challenges faced
by network engineers. In order to accurately grasp the most
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real and urgent needs of network users, we leverage years of
network oncall history and propose a network user behavior
study. To better understand the difficulties and challenges of
network diagnosis from the perspective of network engineers,
we conduct quantitative analysis of network incidents and
monitoring primitives collected from our data centers.

2.1 Network User Behavior Study
We believe grasping the most real and urgent needs of network
users is the first step to design a good network diagnosis
tool. To achieve this, we leverage the daily network oncall
records1 in our cloud networks, and conduct a user behavior
study. These oncall records include network related questions
(containing both underlay and overlay network) raised by
network users and processing dialogues between network
users and engineers.

By Type By Objectives
Configuration Request 2196 DC/AZ Related 1867

Host Network Issue 837 Host(S) Related 4557
Network Consultation 3073 Link Related 462
Others / Void Oncall 1083 Device Related 113

Total Count 7189 Others 190

Table 1: Network User Behavior Study

Table 1 shows the statistics about the collected oncall
records. We collect about 7000 network oncall records from
our oncall system and try to categorize them by question
types and objectives. We observe that, by question types, most
questions can be categorized into Configuration Request,
Network Issue, and Network Consultation types. Configu-
ration requests are to seek manual assistance in network re-
lated configurations such as BGP, firewalls, gateways, and vir-
tual switches. For example, frequent requests include virtual
IP/public IP assignment, firewall allow-list setup, and BGP
configuration setup. Host (physical server, virtual machine,
etc.) network issue questions are raised when users observe
obvious network issues with their host and seek quick fixes.
Network consultation questions ask about network health sta-
tus, which is the category with the highest proportion. The
most commonly asked question is "Is there any problem with
the network in xxx". We believe that answering most of these
three types of questions can be automated, while some dan-
gerous operations should be manually confirmed before being
taken into action.

We also analyze the oncall questions from their objectives.
As summarized in Table 1, most questions are in the dimen-
sion of host level, including physical hosts, virtual machines,
IP pairs, subnets, and clusters. Besides, questions related to
DC (data center) and AZ (available zone) also occupy a cer-
tain proportion. The reason behind this is that questions from

1This user behavior study only includes data center network oncall ques-
tions. But our tool also supports other types of networks, e.g., IT/office
networks, edge/CDN networks, etc.

network users usually originate from the servers they use or
the data centers they are aware of.

We also conclude that network users have the following
behavioral characteristics when submitting an oncall question.

• First, the questions from network users are normally very
broad, e.g., the network health status of a large cluster
with thousands of servers or an entire data center.

• Second, the objectives of the questions are sometimes
very vague. While data center networks have a strict and
accurate naming specification, most network users are
unaware of that. For instance, one user may ask about
the network health in Santa Clara, which refers to an AZ
named US-WEST-1 in the specification2.

• Third, some questions are even missing a clear intent.
Sometimes, users are very anxious to seek manual ser-
vices and may ask questions like "Any network incident
right now?" or "US Redis service is lagging." It is hard
to understand directly from their questions which part of
the network they are asking.

Our tool is designed to take, understand, and respond to
network users who will ask similar questions as in oncalls.
In Section 2.3, we will discuss the corresponding research
challenges in terms of question understanding and processing.

2.2 Network Incidents and Monitoring Primi-
tives Study

Handling network diagnosis requests is challenging for net-
work engineers since the volume of monitoring data and the
detected network incidents is huge. Network engineers need
to go through a large amount of data to find the possible root
causes. Therefore, network diagnosis becomes a time con-
suming and label intensive work. In order to better understand
the difficulties and challenges, we leverage our detected net-
work incidents and collected network monitoring data in our
production network to provide a measurement study.

First of all, we aim to know how frequently network inci-
dents happen in daily operations. We define network incidents
as any network abnormal behaviors that could violate the
service-level agreement (SLA) of the network. More specif-
ically, network incidents include abnormalities of the metrics
(e.g., packet drop, latency, bandwidth) that can be perceived
by the end users and abnormalities monitored from the net-
work components. Network components can be hardware
(e.g., switch, circuit, optical module, and network card) or
software (e.g., operating system, virtual switch, and configu-
ration). The number of daily network incidents can illustrate
the complexity and effort of diagnosing network failures.

In order to avoid bias caused by subjective factors like
threshold, we choose the switch running errors/exceptions,
which are detected by switch syslog to represent network in-
cidents for the quantitative study. Syslog [8, 9] is collected

2We use our venue city name to represent a data center.
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Figure 2: Sample Syslogs Indicating Switch Exceptions

from switch logging services and contains crucial running
information of switches. Sample syslogs are shown in Fig-
ure 2, which indicates switch hardware abnormalities like
board/port/link failure or software abnormalities like protocol
(e.g., BGP, ISIS) down/flapping3. We choose one of our data
centers containing about 14,000 physical switches and count
all syslog errors/exceptions for the entire month of June in
2023. The statistics are shown in Table 2.

Error Type Error Type
Total Count 118,123,984 Linecard Issue 20,690
Queue Issue 57,036,587 Process Exception 83,465

Interface Issue 44,662,097 Frame Issue 2,280,956
Protocol Issue 8,360,567 Others 5,679,622

Table 2: Syslog Statistics for One Month

We can observe that even for just one data center, we en-
counter around 4 million different kinds of switch abnormali-
ties per day. While most abnormalities will auto-recover very
soon and most are in the packet/frame level, it is still annoy-
ing for network engineers since it is hard to tell whether the
abnormalities are user-insensitive or not. Correspondingly,
when network users experience network anomalies, they also
need network engineers to help them diagnose and demarcate
within such a huge number of switch abnormalities.

Other than the switch syslog, there are also several other
types of primitives that monitor the status of different com-
ponents of the network. For example, we track the packet
drop and latency metrics by using the connectivity monitor-
ing primitives and network traffic volume and composition by
using the traffic monitoring primitives. We conduct another
measurement study for the daily data volume of each type of
monitoring primitives for the same data center. The results
are shown in Table 3.

From the statistics shown in Table 3, almost every category
of monitoring primitives has a huge amount of data every day.
Meanwhile, most diagnosis requests from network users often
require a combination of different types of data to analyze.
For example, we may use connectivity monitoring data (e.g.,
PingMesh [18]) to check whether there is any connectivity
issue and locate the IP pairs of abnormal traffic and then use
traffic monitoring data (e.g., sFlow) to further troubleshoot the

3While different vendors have different syslog formats, we parse and
normalize the syslog according to their specifications.

Monitoring Primitive Category Data Volume per Day
Connectivity (e.g., PingMesh [18], 65GB

EverFlow [27], etc.)
Traffic (sFlow, SNMP, etc.) 12TB

Switch Syslog 35GB
Host Monitoring 4.3GB

Routing Configuration 425G
Optical Module (DDM or DOM) 5.5GB

Other Monitoring Primitives 27GB

Table 3: Data Volume of Monitoring Primitives per Day

packer headers to find the root cause. This puts a huge burden
on network engineers to retrieve the data reactively. There-
fore, an automated tool that can perform various diagnosis
procedures will be helpful and unleash network engineers.

2.3 Motivation and Research Challenges

We aim to automatically answer questions from network users.
An existing idea is the text-to-SQL [22] parsing solution,
where the natural language question could be converted into a
SQL query. However, this solution is limited in our scenario
since data retrieval is just one step in the overall diagnosis
process and our network monitoring infrastructure involves
variety of data sources in addition to relational databases, for
example, non-SQL database, file system, message queue, SSH
agent, etc. Therefore, our idea is to leverage NLP technique
to map user queries to pre-defined workflows. As illustrated
in Figure 1, we model the whole system into three abstraction
layers with their unique challenges.

The chat layer is responsible for providing a typical task-
oriented dialogue service for network users. However, it is
challenging since network diagnosis requires precise input
while the questions from users are arbitrary (as shown in Sec-
tion 2.1). This places three requirements on the NLU (Natural
Language Understanding) module. First, it should be able to
cover various granularity of data center networks, from global
regions to small network components. Second, besides the
standard terminologies that are strictly defined in the specifica-
tions, the NLU module should also understand most common
expressions that people might use to describe data center net-
working in everyday conversations at work. Third, when word
slots or the intent is not clear, the chatbot should leverage the
dialogue function to guide users to provide more information
or ask more precise questions.

Figure 3 illustrates the ideal dialogue service we aim to
provide to network users. Our chatbot performs corresponding
diagnosis functions to answer user questions if both objectives
and the intent are clear. If not, our chatbot will use dialogue
to guide network users to provide more information

The workflow layer is responsible for providing and per-
forming diagnosis functions for the chat layer. We argue that
network engineers have the most say on how to diagnose and
troubleshoot network questions as they have extensive expe-
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Figure 3: Sample Dialogues between Users and Chatbot

rience in diagnosing and dealing with network problems on
the front line and have a deep understanding of the specific
network situation, e.g., hardware vendors and models, net-
work architecture, common issues, and user traffic patterns.
Inspired by this, our tool introduces a novel functional module
to collect and convert the experience from network engineers
into a considerable number of executable workflows.

The data layer is responsible for providing the abstraction
of underlying monitoring data. The performance bottleneck
of our chatbot mainly comes from the retrieval of distributed
and large volume underlying monitoring data. Reactively
analyzing the data takes a long time and is unacceptable for
a chatbot. We come up with a solution that combines on-
demand querying and proactive alerting to achieve a good
trade-off between the response latency and the timeliness of
diagnosis results.

3 System Design

In this paper, we propose a virtual assistant tool, named NE-
TASSISTANT, to answer the network diagnosis questions in
natural language from network users. The key idea behind
is that NETASSISTANT aims to understand what intent and
objects network users are asking about and makes responses
using corresponding predefined workflows, which are learned
from network engineers. To this end, NETASSISTANT is de-
signed as three-fold. First, in offline, NETASSISTANT au-
tomatically converted the O&M knowledge and experience
from network engineers into multiple executable workflow
functions. Second, in runtime, NETASSISTANT analyzes the

Figure 4: System Design of NETASSISTANT

intent and word slots of user queries, forwards this informa-
tion as parameters into corresponding workflow functions,
and responds to the users with the outputs of the function.
Third, NETASSISTANT applies several optimization and trade-
offs of the underlying monitoring data storage and retrieval
component to meet the performance needs as a real-time chat
assistant. In this section, we describe the design and imple-
mentation details of NETASSISTANT.

3.1 System Architecture

NETASSISTANT works as an always-on service for the data
center networking environment. As shown in Figure 4, NE-
TASSISTANT consists of three main functional modules: 1)
Dialogue Engine, which provides a dialogue environment
for users and understands the intent and word slots from the
user queries; 2) Workflow Engine, which converts the knowl-
edge and experience from network engineers into workflows
and processes proper workflows for each user query; 3) Data
Engine, which manages all underlying distributed network
monitoring data storage and provides high-performance data
retrieval. In the following subsections, we describe the design
details of each functional module.

3.2 Dialogue Engine

Dialogue Engine module provides network users with a dia-
logue environment that presents a conversational experience
with multiple rounds of question and answer. The input from
the user is plain text in natural language. The output form
is relatively rich, which can be rich text, pictures, interac-
tive components, and hyperlinks. We leverage the typical
framework of a task-oriented dialogue system, and the key
challenge is to build the Natural Language Understanding
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Figure 5: Dialogue Engine Module

(NLU) component. The key target of the NLU component is
to understand the word slots and intent. The intent of each
question will decide which diagnosis function (workflow) that
we will use, and the word slots will be the input parameters.
Figure 5 shows the detailed processing steps for language
understanding, which will be explained in the following.

The Dialogue Engine provides session based dialogue man-
agement to manage user questions. All user questions belong-
ing to the same session will be converted into a question list
for understanding. The first step for understanding is to un-
derstand and parse the word slots from the questions. The
word slot here could be the name of any component in the
data center networks. Therefore, we collect nouns from our
production network and categorize them into different types
according to their role in the networks, e.g., region, country,
state/province, AZ, office, building, pod, subnet/cluster, server,
switch, circuit, and optical module.

We put the words into two word sets. The first word set
contains terminologies strictly defined in our datacenter net-
work specification, which we call the Specification Naming
Set. The second word set contains the terminologies and
their oral expressions, which we call the Oral Naming Set.
The Specification Naming Set is a subset of the Oral Nam-
ing Set. We build a multi-to-multi mapping between the two
sets. It is because one terminology may have multiple oral
expressions (both "Santa Clara" and "US West" refer to "US-
WEST-1"), and sometimes there may have multiple AZs in
the same place (both "US-WEST-1" and "US-WEST-2" locate
in "Santa Clara").

We build these two sets for the word slots parsing, stan-
dardizing, and encoding. We first use the Oral Naming Set to
parse the word slots from the user questions. Then, we use the
mapping between the two sets and the Specification Naming
Set to standardize each word. After that, we encode each word
by using its category name. For example, we encode the word
"Santa Clara" with "available_zone_#14" from the original
sentence for further intent understanding and parse a parame-
ter {"az_1": ["US-WEST-1"]} for workflow processing.

Then, we process the encoded questions for intent under-
standing (i.e., text classification). We iterate through two tech-

nical solutions for text classification. The first one is based
on word-level Convolutional Neural Network (or ConvNet,
CNN) [26]. Motivated by the technological breakthrough
in the area of Large Language Model (LLM), our second
solution is an LLM-based solution. We will detail the two
technical solutions in the following.

Word-Level CNN-Based Solution. Our idea is to leverage
a training based classifier to classify the category/intent of the
given questions. To achieve this, we collect a considerable
number of questions for each intent as the training dataset
for a word-level CNN classifier offline. In the runtime after
the encoding process, the classifier generates a classification
score of the text for each intent and selects matched intent(s)
based on a predefined threshold.

LLM-Based Solution. Our idea is to leverage the power-
ful comprehension skills of the LLM to do multiple-choice
questions. We use the technique of few-shot prompting to add
in-context learning where we demonstrate different intents in
the prompt and let the language model make selections. One
sample of the prompt is:

Intent check_switch_traffic is to check the traffic indica-
tors of a switch. Intent check_host_network is to ... Please
select corresponding intents for the following questions: "My
devbox is unreachable. VM host_ip_#19."

Since we already have >100 intents, which will make the
generated prompt sentence too long, we would like to select
a relatively smaller set of intents (around 10) to shorten the
prompt. To achieve this, we apply vector embedding to both
the user questions and the description of intents and utilize a
similarity based searching method to select the intents.

Based on the classification results of the user questions,
there could be four different cases. 1. If both the intent and
words (parameters) are clear, the chatbot will proceed with
the selected diagnosis function. 2. If the intent is clear, but
some words are missing or have more than one possibility, the
chatbot will indicate the user to supplement this part of the
information. 3. If the classifier selects more than one intent,
the chatbot will indicate the user to select one. 4. If no intent
is selected, the chatbot will respond with the manual page
containing how to use the chatbot and popular examples.

3.3 Workflow Engine
The Workflow Engine module provides network engineers
with the framework to create multiple workflows based on
their expertise. The module consists of three primary compo-
nents: atomic functions, workflow converter, and workflow
library, which work seamlessly together to enable efficient
workflow creation and execution. The expressive atomic func-
tions allow network engineers to create simple, flexible, and
interactive diagnosis logic. The workflow converter converts
the logic into executable workflows, and the workflow library
supports triggering and executing the workflows at runtime.

Atomic functions: The atomic functions form the build-
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Figure 6: Example of TSG for Switch Reachability Check

ing blocks of our workflow system, with each encapsulat-
ing a particular method unique to a specific network entity
and its metrics data. Entities could include switches, links,
interfaces, available zones, and more. The decision-making
method checks the metrics data of the entity over a time
range and determines if there is any abnormality. Addition-
ally, atomic functions may include an optional action process
to analyze specific scenarios within the workflow, such as
pausing a service on a switch to check if it caused overload
or triggering a traceroute to display possible routing paths.

For all common network components, we tailor a set of
atomic functions based on the monitoring primitives to meet
various diagnosis requirements. For example, based on the
sFlow data of a link, we can check if the overall utilization is
high, or if there is any kind of traffic violating the QoS rules, or
if there is any service traffic experiencing a sudden increase or
decrease. There may be multiple algorithm implementations
for the same function. The threshold details can be customized
based on the experience and expertise of network engineers.

Workflow converter: Network engineers can configure a
set of atomic functions to become a Troubleshooting Guide
(TSG). A TSG comprises multiple atomic functions that al-
low specifying the data entity to be analyzed within a given
time range using decision-making logic. The TSG operates
like a state machine, existing at any given point at a specific
stage (atomic function). The outcome of each atomic function
determines the transitions between stages.

Network engineers can configure these TSGs through a
visual interface. The configuration includes the selection and
threshold of atomic functions, arranging them in to a flowchart
and specifying the input such as switch names or time peri-
ods. It is possible to customize different versions of a TSG
with the same name depending on the input value. For ex-
ample, switches from different vendors may have different
check_switch_hardware TSGs. TSGs can be updated and ad-
justed dynamically with the change of network architecture.

Workflow Engine then converts the TSGs to executable
workflow logic and adds essential exception handling, supple-

Figure 7: Example of TSG for Storage Service Check

mentary background knowledge, associated network events,
and common help entries. For instance, all workflows will
be added the logic to check if there are any known/ongoing
network issues or changes and recommend other tools for
non-network issues. Executable workflows are stored in the
workflow library.

Workflow library: The workflow library is responsible
for selecting and executing proper workflows based on the
extracted intents and parameters. Some diagnostic workflows
are only available to specific people (e.g., specific network
engineers). Thus, we apply role-based access control before
executing the workflows. We list the most commonly used
workflows in Section 4.2. All monitoring data access will go
through the Data Engine which we will describe in Section
3.4.

Figure 6 and 7 presents two simplified examples of TSGs
designed to check switch reachability and storage service
health (e.g., a SQL cluster). Respectively, upon receiving the
switch name or service name as input, the workflows consists
of multiple atomic functions, including getting metadata, re-
trieving monitoring data, detecting abnormalities and making
judgments. Finally, if all checks pass and no abnormality is
found, the entity is appropriately marked as healthy.

3.4 Data Engine
In order to track various aspects of the network, we utilize
multiple monitoring primitives, as outlined in Section 2.2.
The Data Engine is responsible for providing the abstraction
and query entry of network monitoring data. However, as
shown in Table 3, extensive analysis of large data sources is
impractical, such as analyzing the last X minutes of sFlow
data across multiple links. This is the performance bottleneck
of the entire system.

The Data Engine utilizes two strategies to ensure efficient
data retrieval. Firstly, data sources that are relatively low in
volume, such as switch configurations, can be stored and an-
alyzed in their current form. These sources do not change
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frequently, so analyzing them in real time is feasible.
However, high volume data sources are more challenging

to manage. While the data generated may contain a significant
amount of normal, expected behavior, only a small fraction
of it is valuable for diagnosis. As such, we use a proactive ap-
proach to monitor the data for anomalies, which are flagged as
alerts. We move the execution of some atomic functions that
use high volume data sources to become always-on operators
generating alerts. The alerts are then tracked, and when we
need to query high volume data sources, we retrieve the alerts
instead of the full data. For example, only a small portion
of syslog data, namely BGP flapping or line card errors, can
actually help diagnose underlying network issues. For con-
nectivity monitoring data, normally, only jitters that violate
the SLAs will get the attention of network engineers.

Trade-off: Leveraging the proactive alerts achieves a trade-
off. We reduce the response time for generating diagnosis
results but sacrifice some timeliness since generating alerts is
not real-time but periodic and increases some computational
burden. We have set the following criteria to determine which
data sources are suitable for proactive alerts. First, the data
sources should have high volume and only the abnormality
is valuable for diagnosis. Second, the quality of data sources
should be high enough that the network team may directly get
involved in the discovered alerts. Third, the latency increased
by the alerts should not violate the service level objectives
of incident discovery and incident diagnosis promised by the
network team. For instance, the network team promises to
detect network issues within 2 minutes, consisting of a delay
from monitoring data and a delay from generating alerts.

Implementation of Alerting System: We implement and
deploy the alerting system as a standalone distributed sys-
tem which consumes real time monitoring data and generates
alerts such as batch BGP peers down, interface flapping, etc.
The alerting system is responsible for generating, aggregat-
ing, prioritizing and publishing alerts, and managing the life
cycle of each alert. The Data Engine of NETASSISTANT is
one of the consumers and it subscribes to a subset of the gen-
erated alerts. The alert generating processes are implemented
as streaming tasks in the monitoring data collection pipeline
before the data storage. This design reduces the overhead
of heavy data I/O compared with frequent database queries.
The streaming tasks subscribe to the monitoring data from
message queues (e.g., Kafka [2]) and utilize a sliding window
for periodic detection. The period is usually set to a minute
level due to our promises about the service level objectives.
Some high priority alerts will directly engage the network
team and trigger a fix, which we will discuss this situation in
Section 5.1.

4 Evaluation

In this section, we first provide the implementation and de-
ployment details of NETASSISTANT. Then, we share several

interesting case studies. At last, we present the evaluation re-
sults of our tool in terms of usage, accuracy, and performance.

4.1 Implementation and Deployment
We describe the implementation and deployment details of
NETASSISTANT, including Dialogue Engine, Workflow En-
gine and Data Engine. The Dialogue Engine consists of client-
side and server-side. The client-side is built on top of a com-
mercial business chat and collaboration tool as a chatbot ap-
plication. The chatbot application is able to access content,
collect information, conduct operations, and support interac-
tion through messages in both private chat and group chat.
The server-side implements NLU and is deployed in a clus-
ter of three server machines. For the NLU component, we
collect around 1,000 data entries for each workflow to train
the CNN-based classifier and leverage a 13-billion-parameter
large language model. The Workflow Engine is deployed in a
computing cluster with 14 instances in different data centers
for the consideration of disaster tolerance and high throughput.
It also contains a front end for the network engineers to create
and configure TSGs. The Data Engine is deployed using a
server alongside the monitoring data storage in every avail-
able zone of our network. The whole system was launched
in April 2020 as an always-on company wide service. And
it has been continuously iterated in terms of techniques and
supported workflows.

4.2 Case Study
We share several diagnosis cases, including user side behav-
ior, diagnosis workflow, and follow-up actions. We also sum-
marise the most commonly used workflows in daily work.

4.2.1 Case 1: Host Network Issue

User Question: A user queried an IP address as her SQL
cluster encountered a connection exception to this instance.
Diagnosis Workflow: The bot identified it as an IP of a virtual
machine and performed the check_iaas_ip_network workflow.
After conducting a multi-dimensional diagnosis on this vir-
tual machine, the workflow found that the link between its
physical machine and the ToR (Top-of-Rack) switch started
to have considerable CRC errors from the SNMP monitor-
ing data, and the ToR switch also reported CRC errors from
syslog. Thus, the bot responded with an unhealthy diagnosis
conclusion and informed the current oncall network engineer
about this issue.
Follow-up Actions: The CRC issue was fixed right after
cleaning up the port on the switch.

4.2.2 Case 2: Data Center Network Issue

User Question: A user reported a suspicious network issue
in a data center at around 2 AM since her managed service

2018    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



had a wave of failures, and the log showed many connection
errors.
Diagnosis Workflow: The bot performed the
check_idc_network workflow and found that there was a
spike of packet drop and latency increase, which lasted for
around 2min according to the connectivity monitoring results.
Involved IP pairs can be aggregated into a /48 IPv6 subnet.
The workflow further noticed that there were several BGP
withdrawn events whose peers pointed to the same switch and
several ECMP imbalance exceptions from nearby switches
syslog. Thus, the bot made a conclusion that there was a
short-lived network issue and the root cause was due to a
switch down event.
Follow-up Actions: The bot responded with the diagnosis
results, estimated impact and suggestions to the user. Network
engineers further confirmed the switch was down and isolated
the switch. However, the bot did not see switch unreachable
alert from the switch reachability monitoring results the
first time, and then the alert was 2 hours late. The network
engineers further found that the switch reachability checker
only checked the switch management port, which in this case
was not down immediately, but the loopback port was down.
So, they learned from this case and updated the corresponding
TSGs with new switch reachability checking logic.

4.2.3 Case 3: Large Scale Network Failure

User Question: To investigate the cause of performance
degradation in a core service, a user queried the network
status of her service.
Diagnosis Workflow: The check_computing_service work-
flow discovered multiple ping drops and high latency alerts
between regions, along with configuration changes that were
made to bring up a plane. The workflow also found the net-
work team had already noticed and engaged in this issue in
advance and had an initial conclusion that the configuration
change might be the root cause. Therefore, the bot responded
with the conclusion from the network team and suggested a
downgrade to the service algorithm.
Follow-up Actions: Further investigation by the network en-
gineers revealed that the misconfiguration causing the issue
was not on the recently updated devices but rather in previ-
ously misconfigured route maps on a Point of Presence (PoP)
device. This misconfiguration increased the priority of routes
advertised by the PoP, leading to congestion and packet drop.
To prevent such issues in the future, they plan to add a veri-
fication module (e.g., control plane and data plane verifiers)
that will detect control and data plane issues.

4.2.4 Most Commonly Used Workflows

We list the most commonly used workflows in Table 4. Similar
workflows are categorized together. Most DC level and IP
level workflows support checking a single target or a pair

Workflows Explanation

check_pod_network
check_az_network
check_idc_network

check_region_network

Data center level network status workflows,
including connectivity (internal, external,
overlay, underlay, v4, v6, subnets and etc.),
bandwidth & utilization (different types of
links, different granularity), switches
and existing network incidents & changes.

check_phy_ip_network
check_iaas_ip_network

check_vip_network
check_rdma_network

check_p4_network

IP level network status workflows,
including software stack check, hardware
status check, network environment
(nearby switches) check

.

check_switch_reachable
check_switch_hardware

check_switch_traffic
check_switch_config

Switch health status check, including
metrics from switch OS (syslog), protocol
(e.g., SNMP, BMP), hardware (e.g.,
linecard, OTN) and external monitors.

check_direct_connect
check_bbone_link

check_isp_link

Physical link level status workflows, mainly
used by network team, including physical
metrics, traffic and protocol status checking.

check_storage_service
check_computing_service

Network service level workflow, checking
network status of involved servers, upstream
and downstream network traffic, QoS
management and etc.

Table 4: Most Commonly Used Workflows

(source and destination), and a time point or period is optional.

4.3 Usage Evaluation
We count the daily usage and the number of distinct users
to evaluate the impact of our tool. We collect the usage data
for two whole months of July and August 2023. A complete
dialogue session counts as one use of our tool. The daily usage
distribution results are shown in Figure 8. We can observe
that there are approximately 100 to 200 uses per day on most
days. The distribution by day of the week is interesting. We
find that the average usage on weekends is much less than
on workdays. This is due to big changes (including software
changes and network changes) are not allowed on weekends
so that the entire data center network is running relatively
stable. We also count and analyze what kinds of users are
using our chatbot services. For July and August 2023, there
are a total of 476 individual users. Most of them are from the
engineering team, e.g., site reliability engineers, computing
or storage infrastructure engineers, and network engineers.
When there is a big network outage, there will be a wave
of heavy usage (normally 20-50) of our chatbot since many
people get affected, and they would like to know the situation
and impact.

Next, we will measure how our tool reduces the oncall
workload for network engineers. Basically, there are three
different cases. The first case is that a user does not raise any
oncall after using the chatbot. The second case is that a user
brings the diagnosis results from the chatbot to an oncall for
further operations4. The third case is that a user directly raises

4Users can raise oncalls either from the oncall platform or through the
chatbot, which will directly share the diagnosis results to the oncall.
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(a) Daily Oncall Usage for July
and August in 2023 (CDF)

(b) The 50th Percentile Usage by
Day of the Week

Figure 8: Daily Usage Results of NETASSISTANT

an oncall without using the chatbot, maybe because she does
not know the tool.

We name the first case as an effective use of our tool.
We consider the situation where an individual user makes
several effective uses within a short time (e.g., an hour) as a
successful oncall interception. Based on our statistics, the
number of intercepted oncalls is about one-third of the total
number of effective uses of our tool. The insight behind is
that one user may continuously make several queries for just
one issue. We further define the oncall interception rate
as the number of intercepted oncalls divided by the sum of
the number of raised oncalls and the number of intercepted
oncalls. For the second and third cases, we will compare the
oncall time with and without using the chatbot to measure
whether the chatbot can benefit the oncall process.

Besides the NETASSISTANT usage data, we also collect
our data center network oncall records for July and August
2023 and calculate the daily oncall interception rate and aver-
age processing time. The results are shown in Figure 9. We
can observe that NETASSISTANT can reduce around 50% -
90% of daily oncalls. In most reduced cases, the user gets a
response of health network status from the chatbot and does
not continue to raise the oncall service. For the results of
oncall time with and without the diagnosis from our tool, we
can find that the information provided by NETASSISTANT
can shorten the average oncall time. Figure 9(b) shows that
NETASSISTANT can save around 20% - 25% of an oncall
time in most cases. The saved time should have been spent
by network engineers going through various monitoring data.
With our tool, network engineers can focus more on the issue
fix and communication with the network users.

4.4 Accuracy Evaluation
As a diagnosis tool, NETASSISTANT must achieve high accu-
racy to gain user trust. In this subsection, we will show our
evaluation results of the false positives and false negatives of
the diagnosis results. False positive is a non-network issue,
but the chatbot diagnoses it as a network issue. To calculate
the false positive ratio, we perform manual verification of
results that are diagnosed as network issues over a period of

(a) Daily Oncall Interception
Rate

(b) Oncall Duration Time Com-
parison (CDF)

Figure 9: How NETASSISTANT Benefits Daily Oncall

Mar Apr May Jun Jul Aug
FP 9.48% 12.33% 11.6% 10.63% 9.62% 8.45%
FN 0% 0% 0% 0.43% 1.25% 0%

Table 5: Accuracy Evaluation Results of NETASSISTANT

time. We find that the false positives are normally due to noise
from the monitoring data. False negative is a network issue
that is not detected by the chatbot. For every user-perceived
network incident, we have the postmortem session that will
check whether it has been (or can be) detected by our chatbot.
Based on our experience, false negatives are much more harm-
ful since the results may mislead network users and engineers
and delay the progress in fixing issues.

We collect the false positives and false negatives data for
half a year (March 2023 - August 2023), as shown in Table
5. We can observe that the false positive ratio is around 10%.
We also find that the majority of false positives come from
sampling based monitoring data (due to the nonrepresenta-
tive data as a result of chance) and switch monitoring data
(especially when the switch is under high CPU utilization
or software upgrade). Based on our experience, false posi-
tives are hard to avoid. Thus, we take a hierarchical approach
to the network issues we detect. The chatbot will make an
"unhealthy" result only for severe and wide-ranging network
issues. For other detected small issues, the chatbot will make
a "warning" result to inform the user that there could be a
network issue. Compared with false positives, false negatives
basically rarely happen. They are mostly due to problems oc-
curring in places not covered by monitoring infrastructure. So,
after every false negative happens, we will quickly improve
the monitoring items and related diagnostic workflows. For
example, in the second case in Section 4.2, we found a false
negative generated by the switch reachability monitoring data
since the switch loopback port had not been covered, and we
fixed this flaw after the postmortem.

4.5 Performance Evaluation

As a dialogue system, the response latency is an important
part of the user experience. To address the performance bot-
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Figure 10: The 99th Percentile Running Time of Workflows

tleneck introduced by monitoring data retrieval, we design
and implement the Data Engine module as shown in Section
3.4. To verify the performance improvement, we measure the
response latency of the commonly used workflows listed in
Table 4 with and without using the proactively generated alerts
in Data Engine. We count the 99th percentile response latency
for different categories of workflows. As shown in Figure 10,
compared with retrieving monitoring data on the fly, lever-
aging proactively generated alerts can save significant time.
The Data Engine reduces the overhead of big data query and
transmission. After the optimization, most commonly used
workflows take 5-10s for execution. Based on user experience
feedback, the 5-10s response delay is acceptable but almost
at the limit for a dialogue system. Considering we are still de-
veloping and adding new monitoring items to the diagnostic
logic, performance optimization will be a continuous work in
the future.

5 Experience Learned

NETASSISTANT is designed to help both network users who
use the data center networks and network engineers who are
engaged in front-line network O&M work. The user expe-
rience is the key to the success of our tool. Therefore, in
addition to the iteration of the tool itself, we also provide
thorough customer services including seminars, office hours,
and surveys. We would like to share several lessons we have
learned during the development and operation of our tool.

5.1 Can we proactively find alerts, engage the
network team, and inform users?

As described in Section 3.4, Data Engine will set up operators
to proactively generate alerts for high volume monitoring data.
The straightforward question is, can we directly leverage the
alerts to engage the network team and inform impacted net-
work users in advance before they ask? The answer is partially

yes. We only cover a small portion of high-priority alerts with
severe influence. There are a few reasons. Firstly, as explained
in Section 2.2, network incidents will flood the network team
and users, which is impractical to manage. Secondly, the cov-
erage and granularity of some monitoring techniques are lim-
ited by old models, device performance, and vendor support,
which affects their quality. Finally, the resource budget is in-
sufficient to proactively run all workflows, so we reserve them
only for the high-priority ones.

5.2 Quality user experience
We prioritize ensuring a positive user experience and high
engagement with our tool during network diagnosis and trou-
bleshooting. To achieve this, we strongly emphasize the ac-
curacy of our tool, which is achieved through the release of
new workflows only after extensive testing. In addition, in our
experience, we recognized that users often require further de-
tails beyond the initial technical diagnostic report, including
information about the network issue, its service impact, and
where to turn for help. To address this need, the chatbot pro-
vides users with additional details and resources. For instance,
the chatbot will provide a brief explanation of the monitoring
metrics and why it is (not) a network issue. Moreover, the
chatbot can recommend relevant technical documents and
similar problem operations and even enter an oncall or ticket
request based on the question and diagnosis results.

5.3 Empowering our users
Our natural language understanding component is trained or
tuned by user queries. On the contrary, our chatbot can also
influence how users ask questions. We observe that after using
our chatbot, user questions become more and more accurate
and concise, and the communication between network users
and network engineers has been dramatically simplified. For
example, users get to know more network knowledge and ter-
minologies and better descriptions of their questions. Further,
the feedback and suggestions from users can help us polish
our tool better. We are happy to see such an effect and think
it is a virtuous circle.

5.4 Limitations and Future Work
We understand that our tool, while a crucial advancement in
automated network diagnosis and troubleshooting, presents
several areas for further research.

First, the state-of-the-art Large Language Model (LLM)
has shown significant improvement in natural language un-
derstanding and generation, and has great potential to help au-
tomate network diagnosis and troubleshooting as a new tech-
nology. Our experience shows that LLM is good at learning,
extracting and paraphrasing static information from diverse
sources. For example, it can accurately and helpfully answer
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questions like "How does our QoS system work" and "What is
the standard operating procedure for a network change". How-
ever, we find it challenging to use LLMs to answer network
diagnosis questions due to their limitations in understanding
and learning diagnostic logic, as well as processing real-time
monitoring data. Therefore, in this project, we leverage LLM
for intent understanding but still rely on pre-defined diagnosis
workflows.

Secondly, the manual effort involved in building workflows
hinders the complete automation of network incident detec-
tion and mitigation. Achieving full automation remains a non-
trivial task. We plan to fully automate the ability to convert
workflows from natural language and past incident cases/tick-
ets. Furthermore, we expect the workflows to be self-adjusting
based on feedback from users and network engineers.

Finally, network monitoring primitives form the foundation
of our tool, and the quality of the diagnoses is highly depen-
dent on the input monitoring data. The diversity of data center
network monitoring data and the different implementations
from numerous hardware vendors make data screening and
pre-processing very arduous. In the future, we plan to enhance
our tool’s capabilities with selective data source selection and
noise filtering to improve the quality of the results.

6 Related Work

Natural Language Processing: Our work has been heavily
inspired by the dialogue systems in the NLP domain [14,
21]. A dialogue system can be categorized into task-oriented
or non-task-oriented (also known as open-domain). There
have been several task-oriented dialogue system products in
industry [1, 3, 4, 10]. Our work attempts to leverage the task-
oriented dialogue technique into the data center networking
domain and addresses several unique challenges. Besides, a
significant breakthrough has recently been made in the field of
LLM. Products like ChatGPT [5], LLaMa [6], and PaLM [7]
demonstrate strong ability in language understanding and
generation. Our work leverages the understanding ability of
LLM, and we are still exploring its generation ability.

Querying: Many works have improved the efficiency and
effectiveness of querying and summarizing network traffic.
Sonata [19] partitions each query across the stream processor
and the data plane and dynamically refines each query to en-
sure it focuses only on traffic satisfying it. BeauCoup [15] is
another programmable switch-based system. Using a coupon
collector approach, it supports multiple distinct counting
queries simultaneously while making only a small constant
number of memory accesses per packet. Net2Text [13] uses
NLP to format natural language operator queries to database
SQL-like queries, executes the query, summarizes the results,
and translates the summary back to natural language. We are
inspired a lot from Net2Text and further leverage the dialogue
system to build a general-purpose querying framework.

Diagnosis: There have been numerous efforts to develop

tools that can automate fault localization. One such tool is
OmegaGen [20], which combines static and dynamic analy-
sis to track the control and data flow through a program to
localize partial software failures at runtime. Another focus
of automated fault localization tools is identifying the cause
of packet drops. For instance, 007 [12] ranks links based on
their relative drop rates using the path of TCP connections
suffering from one or more retransmissions. On the other
hand, Drift-Bottle [28] takes a more distributed approach,
with each switch using the status of flows to infer suspicious
links and add lightweight inference headers to packets sent
to the operator. VTrace [16] focuses on detecting persistent
packet loss over the cloud-scale overlay network. It utilizes
the "fast path-slow path" structure of virtual forwarding de-
vices to track and inspect the packets of interest in depth
selectively. Zeno [23] generates a causal graph to capture
the temporal dependencies between events in a system, such
as requests and their corresponding responses, to diagnose
performance problems. CloudCanary [25], on the other hand,
uses fault graphs to perform real-time audits on service up-
dates to identify the root causes of correlated failure risks and
generate improvement plans with increased reliability. Tools
like Scouts [17] use machine learning to analyze complex
relationships and route incidents to the most likely responsi-
ble team. We benefit from these works by allowing network
engineers to autonomously select and customize diagnostic
algorithms to build workflows.

7 Conclusion

We propose NETASSISTANT, a virtual assistant tool to an-
swer network diagnosis questions and help both data center
network users and network engineers. The tool is motivated
by our measurement study about network user daily queries
and the network monitoring primitives used by network engi-
neers in our production network. NETASSISTANT abstracts
the whole diagnosis process into the dialogue layer, workflow
layer, and data layer. Accordingly, we design three functional
modules to realize these layers and provide dialogue-based
network diagnosis to our users. NETASSISTANT has been de-
ployed and used in our company for over three years and the
evaluation results show that this tool can significantly reduce
the workload of both network users and network engineers
and provide excellent user experience and performance.
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