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Abstract
This paper presents the design, implementation, evaluation,
and deployment of Crescent, ByteDance’s network emulation
platform, for preventing change-induced network incidents.
Inspired by prior art such as CrystalNet, Crescent achieves
high fidelity by running switch vendor images inside con-
tainers. But, we explore a different route to scaling up the
emulator with unique challenges. First, we analyze our past
network incidents to reveal the difficulty in identifying a safe
emulation boundary. Instead of emulating the entire network,
we exploit the inherent symmetry and modularity of data cen-
ter network architectures to strike a balance between coverage
and resource cost. Second, we study the node-to-host assign-
ment by formulating it as a graph partitioning problem. Eval-
uation results show that our partitioning algorithm reduces
the testbed bootup time by up to 20× compared with random
partitioning. Third, we developed an incremental approach to
modify the emulated network on the fly. This approach can be
30× faster than creating a new testbed of the same scale. Cres-
cent has been actively used for three and a half years, which
led to a significant reduction in change-induced network in-
cidents. We also share Crescent’s success in many other use
cases and the critical lessons learned from its deployment.

1 Introduction

As one of the largest and fastest-growing global online ser-
vice providers, ByteDance’s physical network infrastructure
has expanded rapidly in recent years to meet the explosive
business demand [5, 7]. Such a wild expansion has created
a hyperscale and heterogeneous global network that consists
of medium- and large-scale data centers (DCs), regional and
global wide area networks (WANs), points of presence (PoPs)
of all sizes, and virtual DCs (vDCs) from multiple public
cloud providers. We have network switches from nearly all
the major switch vendors and multiple generations of net-
work architectures co-existing across different DCs/PoPs. As
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(a) # network devices and changes
(normalized using 2020-1H).

(b) Trend of # network incidents per
thousand changes.

Figure 1: Growth of network size, network changes, and net-
work incidents in last 3.5 years.

shown in Figure 1a, the total number of switches in our net-
works has grown by 7.5× in the past three and a half years.
Meanwhile, the number of changes made on these networks
has increased at an even higher rate. The changes, mainly on
topology and switch configurations, include modifications
to our network structures, routing policies, device software,
peering with cloud and Internet service providers (ISPs), etc.
Many such changes require network operators’ careful de-
signs, detailed Methods of Procedure (MOPs), and cautious
executions. But even with those efforts, we still ran into a
series of outages due to missed or unforeseen issues. In the
second half of 2020, network changes accounted for approx-
imately one-third of our incidents. Since the networks kept
growing bigger and increasingly complex, it became a daunt-
ing challenge for our network operators to think through all
scenarios and identify all possible issues before performing
changes to the production networks.

To reverse the alarming trend of the change-induced in-
cidents, we developed Crescent, a high-fidelity emulation
platform to provide a production-like environment for net-
work operators to test and verify their changes. As shown in
Figure 1b, we rolled out Crescent during the second half of
2020. Since then, we have witnessed a steady decrease in net-
work incidents along with increased deployment and usage of
Crescent. Around the mid of 2022, we enforced Crescent as a
mandatory requirement to conduct critical network changes,
which has further bent down the curve.
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We are aware that a plethora of solutions have been pro-
posed in recent years to prevent network incidents caused by
configuration changes. One popular alternative to emulation
is control plane verifiers (CPV) [12, 29, 55, 57, 59] which em-
ploy either simulation or formal modeling to verify the impact
of configuration changes on specific reachability properties of
the network. But most of them cannot detect vendor-specific
behaviors (VSBs), which have caused many of our incidents
(§2.2). Hoyan [55] attempts to model VSB by actively track-
ing the differences between its analysis output and the real
production behavior. But, it can only catch VSBs that are
present in production and requires extra efforts to update its
VSB models. Many VSBs that caused our incidents (§2.2)
were neither documented nor seen in production beforehand.
Other limitations of CPV have been discussed in [19, 41].

Network emulators [3, 4, 8, 10, 23, 40, 41, 53] overcome the
aforementioned CPV limitations by running switch vendor
software images in virtual machines (VMs) or containers.
Nevertheless, very few emulators can scale to emulate large
networks, and most require manual efforts to adapt production
configurations to the format supported by the vendor images
(§4.2). The closest work to Crescent is CrystalNet [41], which
leveraged cloud VMs to scale up and proposed reducing the
size of the emulated network by finding a safe static boundary.
But as admitted in [41], the boundary found by CrystalNet
is based on certain assumptions from their routing policies
that do not apply to everyone. Analysis of our past incidents
confirms that such a boundary is much harder to find in reality
(§2.2). This led us to a different route from CrystalNet in
scaling up the emulator. The design and implementation of
Crescent aim to answer the following questions, which are
also the main contributions of this paper.

First, if it is hard to identify a safe emulation boundary,
does it mean we have to emulate the entire network? Based
on the analysis of our past incidents as well as the experience
from other hyperscalers [13, 15, 32, 41, 42, 48, 51], we see
that the changes on different devices have different impacts.
High-level core devices (e.g., WAN devices) tend to have
more complicated configurations, and the incidents due to the
changes in these devices tend to be more severe. On the other
hand, the devices inside a DC are normally in modular and
symmetric architecture, and incidents caused by the changes
in these devices have a limited blast radius. Inspired by these
observations, we proposed emulating a baseline topology that
includes all the core devices while sampling the lower-level
non-core devices.

Second, the above baseline topology is still quite large. Be-
cause of the high resource requirement to run switch images,
we need many hosts to emulate a large network. Then will
it matter how we map the network nodes to different hosts?
CrystalNet mapped nodes to many VM hosts but did not an-
swer this question. We conducted thorough experiments to
show that the performance was heavily impacted by the node-
to-host assignment. We formulated it as a graph partitioning
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Cloud 2

Cloud 1
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Aggregation

ToR

core
non-core

Figure 2: Simplified view of ByteDance’s network.

problem and proposed a variant of the community detection
algorithm to solve it. Evaluation results show that our algo-
rithm resulted in 20× improvement in testbed bootup time
compared with random partitioning.

Third, how to test a network change plan involving devices
(i.e., devices under test, namely DUT) that are not part of the
above baseline topology? We connect DUT to the baseline
topology through controlled expansion to form a connected
graph. And instead of rebuilding the testbed for the expanded
network, we create the expanded nodes and wire them dynam-
ically to the baseline topology which has been emulated in a
pre-built testbed called canary testbed. Such an incremental
emulation scheme improved the testbed ready time for testing
a network change plan by 30×.

Last, emulation is only the first step; it reproduces the
impact of a configuration change but still requires someone
to analyze the updates’ impact. Instead of asking users to
regularly monitor and interact with the emulated network,
Crescent takes a more proactive approach. It tightly integrates
with a diverse range of efficient verification tools to proac-
tively detect errors and unexpected behaviors that arise due
to changes in real-time.

The rest of the paper is structured as follows: §2 outlines
the motivation and describes the challenges in our network.
The design of Crescent to address these challenges is pro-
posed in §3, while scalability is tackled with a novel graph
partitioning algorithm in §4. The incremental emulation ap-
proach is detailed in §5, along with various verification and
monitoring tools integrated into Crescent to automatically
detect issues in an emulated network in §6. Evaluation re-
sults for Crescent are presented in §7, with other use cases
described in §8. Lessons learned from building and running
Crescent for 3.5 years are shared in §9, with related works
discussed in §10. Finally, §11 concludes the work.

2 Background and Motivation

2.1 ByteDance’s Network

Our network mainly consists of three components: (1) a set of
data center networks (DCNs) at different scales, (2) a global
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WAN and several regional WANs that connect all DCs and
PoPs, and (3) vDCs from various third-party cloud providers
that are connected to our major DCs. Figure 2 gives a simpli-
fied overview of our network. All these components together
form one of the world’s largest networks, serving as one of
the largest online services [7].

ByteDance’s DCN is a variant of traditional multi-stage
Clos network that can be described in the following simpli-
fied model. The bottom layer consists of ToR (Top of Rack)
switches, each of which directly connects a rack of servers.
These ToRs also connect to the middle layer aggregating con-
nections from the bottom layer. These middle layer switches
connect to the top layer, that comprises the core switches that
aggregate middle layer fabrics and connect to other DCNs,
WANs, and clouds. To be consistent with terminologies used
in other works, e.g., [32], we call the middle layer “aggrega-
tion layer”, and the top layer “spine layer”. We define the core
devices in our network as the WAN and spine layer devices,
and the other devices as non-core devices [13, 42].

For the third-party clouds, we have no direct control over
their physical devices. But we can configure certain routing
policies in their management portals to control the peering and
the traffic between our DC’s border devices and the clouds.
These policies are applied based on different demands and
thus sometimes are not standardized, i.e., different regions
may have different policies. Even in the same region, there
can be different numbers of spine devices connected to a
same cloud. As a result, the configurations on core devices
are complicated and non-standardized.

Different from those core devices, the configuration of non-
core devices in DCN is usually highly standardized. It entails
that the devices on the same level tend to exhibit the same rout-
ing behaviors (e.g., receive the same routes from higher level
devices, and announce the same granularity of routes to higher
level devices). The high standardization for the non-core de-
vice configurations is ensured by (1) generating configuration
for all non-core devices using automatic script and config
templates; and (2) checking the running configurations peri-
odically to detect violations against DCN design rules [26,38].
Many other hyperscalers [13, 15, 32, 41, 42, 48, 51] also adopt
the practice of standardizing and simplifying the configura-
tions of non-core devices in DCN. Leveraging symmetry and
synergy created by such standardization and simplification to
streamline network analysis has been studied by many works
in network verification [15, 16, 30, 43]. To the best of our
knowledge, we are the first to extend this idea to the area of
network emulation.

2.2 Incidents Analysis

In this section, we show two examples of our past network
incidents. Then, we give a statistical analysis of all change-
induced incidents in our network over the past years. These
incidents motivate our features, design choices, and use cases.

Figure 3: An illustration of incident B.

2.2.1 Incidents Examples

Incident A. In one incident, a config change was made on
a global WAN device to prepend an AS number to the AS-
PATH of a DC route. However, the same AS number of global
WAN was used for prepending, which triggered an unexpected
VSB: while some vendors prevent AS loop only for eBGP,
others consider iBGP too. Each of our global WAN devices
peers with a route reflector (RR) through iBGP. The vendor
of RR did not consider the route with prepended AS number
forming an AS loop and propagated the route to the rest of
global WAN. But the vendor of the rest of global WAN treated
this as an AS loop and dropped the route. To prevent such an
incident, we need to emulate at least the global WAN device
under change, the RR and another global WAN device. To
detect this issue via end-to-end connectivity test, we need to
emulate more devices, i.e., from the origin DC of the affected
route and from the DC connected to the other global WAN.
Incident B. In another incident, a network operator drained
the traffic on a switch by disabling the peers in a BGP peer
group and then re-enabling the peers to undrain the traffic.
However, for this vendor, disabling the BGP peer group op-
eration will automatically delete all statements that associate
peers to a peer group under IPv4-family section (highlighted
in Figure 3). Later re-enabling the peers will not automatically
add those statements back. Figure 3 illustrates this incident:
when doing this operation on R0, the highlighted statement
disappeared after the traffic undrain operation. The BGP peer
group G1 has a route policy to extend AS-PATH length to 2
from R1 or R2 to R0. However, the newly enabled peer ip1 is
not associated with G1, thus has a shorter AS-PATH compared
to the other peers, e.g., ip2, leading to all traffic going through
the link from R1 to R0, which caused severe link congestion.
To capture this issue, emulation must include all the core de-
vices shown in the Figure 3, emulate R0 with its respective
vendor image, and compare the routes before and after the
change.

We can draw 2 quick takeaways from the above incidents:

1. VSBs are notoriously hard to prevent because people are
often unaware of VSBs, most of which are not well docu-
mented. These VSBs could lead to all kinds of incidents,
also observed in prior works [41, 55]. High-fidelity emu-
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lation using switch vendor images is the effective option
to capture the unknown VSBs.

2. Emulating only the devices under test is insufficient to
catch the impact of a change. It is difficult to identify the
minimum scope of the network to be emulated, especially
when the blast radius of the impact of a network change is
hard to predict [32, 42]. More discussions are in §2.3.

2.2.2 Statistical Analysis

We conduct a statistical analysis over the O(100) incidents
that happened in our networks in the last 3 years. Out of them,
about 1/3 network incidents were caused by network changes
and thus can be potentially captured by emulation. The others
are caused by issues such as traffic bursts, capacity losses,
device failures, etc. Among these change-induced incidents,
30% of them involved VSBs. The impact of these incidents
spans all 5 severity levels, among which level 1 means the
most severe incident, while level 5 means the least. Approx-
imately 80% of change-induced incidents are identified as
level 3 or higher, resulting in substantial business losses. By
further examining the change-induced network incidents, we
found that over 90% of these incidents happened on our
core devices. This is likely because the configurations on
core devices are more complex than non-core devices, i.e.,
more routing protocols besides BGP (e.g., ISIS, OSPF, SRTE,
etc) are used, more route policies are applied, and more com-
plex topologies are formed. Such complexity is more likely
to trigger various unknown VSBs.

2.3 Cost v.s. Coverage

To prevent the above incidents, an intuitive solution is to em-
ulate the entire network, but it comes with a high cost (with
respect to resource usage). As the number of devices to be
emulated increases, so does the cost. We list all the vendor’s
images, for one or more versions, and the corresponding re-
source requirements in Table 1. Note that different images
have different resource requirements , e.g., memory usage,
the primary resource bottleneck, ranges from 1 to 16 GB.

An alternative is to find a tighter safe boundary as defined
in CrystalNet [41]. After analyzing the incidents that hap-
pened in our network from the past 3 years, we find that their
strategy to find a safe boundary does not apply to other net-
works like ours. First, it assumes that AS-PATH removal and
rewrite are rare, leading to shortened boundaries. However, in
our network, these actions are frequently utilized, particularly
on core devices, and have caused 15% of our incidents. Sec-
ond, we find the expansion algorithm proposed by CrystalNet
is primarily about expanding the network to higher layers.
This is not enough for us to find a safe boundary to prevent
55% inter-DC incidents in our network. For instance, to pre-
vent Incident A, we need to include our global WAN and two
DCNs to detect the issue. But CrystalNet can only expand un-

til the global WAN that contains all DUTs of this change. On
the other hand, it’s crucial to expand the network downwards
and include both DCs. Similarly, in Incident B, it’s important
to emulate all lower-level devices and observe that after the
change, R3 will only forward traffic to R1 and not both R1
and R2. Overall, CrystalNet’s expansion algorithm can poten-
tially miss approximately 60% of the incidents, among which
10% involve both the limitations. Moreover, we find that in
some scenarios, even when their assumption holds, e.g., only
AS-PATH prepend policy exists, an incident may still happen
due to other issues, e.g., ECMP reduction in Incident B.

Vendor Image type vCPU RAM(GB) Size (GB) Port limit

v1 container 1 2 1.60 unlimited
VM 2 4 2.08 64

v2 VM 2 8 1.47 64
v3 VM 2 8 4.31 128

v4 VM 2 4 1.57 10
VM 8 16 4.14 100

v5 container 1 2 0.43 64
v6 VM 2 4 1.34 10
v7 VM 4 5 1.48 96

Table 1: Specifications of various vendor images (v1-7).

Based on our analysis result, it is essential to always em-
ulate the core devices in our network to avoid those 90%
incidents that are caused by network changes on our core de-
vices. Besides, incidents that happen on core devices tend to
cause a larger blast radius than non-core ones. Meanwhile, we
are not trading off safety for cost. By including the sampled
non-core devices into the canary testbed (§3), the rest (less
than 10%) of network incidents caused by changes on non-
core devices can also be captured by Crescent, assuming their
configurations are standardized. By doing this (i.e. including
all the core devices and sampled non-core devices), we only
need to emulate less than 2% of our entire network fleet.

2.4 Scalability over Multiple Hosts
Even though we choose to emulate a small fraction of our
entire network, it still contains thousands of devices that we
cannot emulate on a single host due to the high resource re-
quirement of emulating each device (Table 1). A natural idea
is to employ multiple hosts, as CrystalNet [41] did. But, it is
unclear how CrystalNet maps thousands of nodes onto multi-
ple hosts. In other words, how to partition a given network to
let each host emulate a subset of the network? While similar
problems have been studied in other contexts e.g. [52], none
of them applies to the emulators like CrystalNet and Crescent.
We observe that a multihost testbed using different node-to-
host assignment schemes can yield significant performance
differences. For example, a simple random partitioning may
not scale at all (§7.2). We study this challenge by uncovering
the system bottleneck, formulating it as a graph partition-
ing problem, and solving it with a variant of the community
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Figure 4: An illustration of Crescent workflow to create a new
multihost canary testbed.

detection algorithm (§4.3).

3 Crescent Design Overview

We build a canary testbed to emulate the baseline topology
that includes all the core devices and sampled non-core de-
vices. We sample the non-core devices by selecting one plane
out of multiple planes, and selecting one device per vendor
on each level of a plane. To keep it simple and consistent,
our strategy is to always pick devices from the 1st plane on
every level, ensuring that aggregate routes can be activated,
the same as in our production network. Also we integrate
each testbed with proactive monitoring and verification tools
to automate the detection of impact of changes.

3.1 Multi-Host Canary Testbed
We run the large-scale canary testbed by distributing thou-
sands of emulated nodes across a cluster of baremetal servers
using a multi-host setup (§4.1). We employ a novel partition-
ing algorithm to minimize the number of cross-host links,
which significantly reduces the canary testbed bootup time
(§4.3) as well as the time to connect DUTs to a canary testbed.

Figure 4 shows the workflow in a multi-host setup. Each
host runs a local agent that manages emulation on that host.
When the agent receives input for a maintenance request, it
first identifies which new nodes and links need to be emulated
on that host. Next, it fetches the configurations of new nodes
from production networks and parses and adapts them to be
compatible with vendor images. After this, the agent launches
and connects each node’s containers with the appropriate
configurations and vendor images. Finally, when required, it
sends the emulation data to the monitoring and verification
tools for proactive analysis.

3.2 Connect DUTs to Canary Testbed
Instead of creating a large-scale testbed from scratch for every
network change request, we run multiple instances of non-
stop canary testbeds. For each request, we connect its DUTs
to one idle canary testbed.

If DUTs are not in the baseline topology, Crescent needs
to emulate these DUTs in new containers and connect them
to the canary testbed, along with the intermediate nodes be-
tween them. Crescent achieves this using a novel expansion
algorithm that ensures the heterogeneity of the devices along
the paths from DUTs to canary testbed (§5.1). The expansion
algorithm considers different factors (e.g., vendors, planes,
levels) when exploring the paths from DUTs to the running
canary testbed. To allow DUTs and the intermediate devices
to connect to and disconnect from the canary testbed on the
fly, Crescent supports dynamic link addition/removal (§5.2).

It is more cost-effective to run a nonstop canary testbed
than rebuilding a new one. Also based on our historical data,
over 50% of our network changes happened on core devices. It
suggests that there is no need to create any new containers for
most of the requests, as we already include all core devices in
canary testbed. Besides, the time to connect DUTs to canary
testbed is also much lower than the time to rebuild a new
canary testbed (§7.1).

3.3 Proactive Verification and Monitoring
Emulation alone can not detect network issues (e.g., loop and
blackhole) at scale. It must be combined with various veri-
fication and monitoring tools (§6) to automatically analyze
the impact of change on an emulated network. After automat-
ically applying each command of the MOP to DUTs, we take
a snapshot of the converged network and proactively run the
verification and monitoring tasks to detect potential issues
caused by each command.

4 Building Canary Testbed

A large-scale high-fidelity canary testbed containing all core
devices in our network is the key to the design of Crescent
as described in §3. In this section, we discuss our approach
to address the scalability challenge in running a large-scale
canary testbed. We formalize the scalability challenge as
a graph partitioning problem and then propose a heuristic
algorithm to solve the problem.

4.1 Network Emulation
Crescent’s network emulation platform shares similarities
with most of the other container-based network emulators [3,
8–10,41,53]. Each node is wrapped in an individual container
with a switch OS running inside. A link on the same host
is emulated by a veth pair, while a link across hosts is em-
ulated by OVS bridge. Figure 5 shows an example of such
a container network implemented in Crescent. We defer the
implementation details to §A.

We run the canary testbed on a cluster of baremetal hosts.
On each host, Crescent runs a local agent that interacts with
OS for node and link creation. Running a multi-host canary
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Figure 5: An illustration of Crescent implementation with virtual nodes (container-based and VM-based) and links.

testbed is straightforward with this setup. When booting up a
testbed, we send the same topology input to all the host agents.
The input topology specifies the host each node is running
on. Then, each local agent boots up the local portion of the
testbed based on the input topology, including the nodes and
links. The agent creates local veth pairs between nodes on the
same host and OVS bridges for cross-host links.

4.2 Multi-Vendor Config Adaptation

Upon the testbed bootup, Crescent immediately loads the con-
figuration file into the emulated nodes. However, we find the
production configuration cannot be directly applied to the em-
ulated nodes due to the limitations of the vendor’s software
switch images. To that end, Crescent has to adapt the pro-
duction configuration into an image-compatible form before
loading it into the emulated nodes. Figure 6 shows an example
where Crescent adapts an interface’s configuration to ensure
ISIS [1] is activated on this interface. First, it is important to
note that the interface names in emulation may not precisely
match those used in production. Therefore, it is necessary
to rename these interfaces and maintain a mapping between
the emulated interface names and their counterparts in the
production environment. Second, certain security-enhanced
commands, like “macsec,” can prevent ISIS from being ac-
tivated and thus must be filtered. Last, the MTU (Maximum
Transmission Unit) value in the production environment is
typically greater than the default MTU value supported by
our host. Thus, we must reduce the MTU value in the adapted
config to a value lower than the default MTU value on our
host. Config adaptation, which involves all vendors and image
types, is critical to automating large-scale testbed creation.
Whenever a new, previously unseen configuration template is
introduced, extension of Crescent is necessary to support it.

4.3 Multi-Host Partitioning

A large-scale canary testbed with thousands of nodes must
run in a distributed manner. Nonetheless, prior research, such

Figure 6: An example of configuration adaptation to a simple
interface config to activate ISIS status on this interface.

as Crystalnet [41], does not delve into the detail on how to
partition a large-scale testbed across a set of hosts (or VMs on
cloud). Other works [56,60] focuses on minimizing cross-host
communication overhead by reducing the number of cross-
host links. However, we find that cross-host communication
overhead is negligible (§7.3). Crescent also tries to reduce the
number of cross-host links, but for a different reason, i.e., to
reduce testbed creation and DUT connection time.
Cross-host Link Creation Overhead. A simple strawman
approach is to partition all the emulated nodes across hosts
randomly, following a uniform distribution. However, we find
that it creates thousands of cross-host links, which incurs a
significant overhead on creating a testbed and connecting
DUTs. This phenomenon is because the overhead to create
cross-host links increases linearly in the Linux kernel. It is not
specific to the OVS bridge, but also applicable to the Linux
bridge (used by CrystalNet [41]). As shown in Figure 7, both
Linux bridge and OVS bridge creation incur a linear overhead
(the x-axis is in log scale), i.e., the more links there are on the
host, the longer it takes to create a new link1. This overhead
is inevitable even if all bridges are created in parallel.

Consequently, we must minimize the number of cross-host
links. The benefit has two folds. First, connecting DUTs usu-
ally needs to create O(100) new links (§5.2), thus, by reducing

1Besides merely creating the bridge, the bridge creation operation we
consider here also includes the operations of creating veth pair, binding
VXLAN port to the bridge, and bringing up all these virtual devices
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Figure 7: Overhead of cross-host link creation (OVS bridge
and Linux bridge).

the number of cross-host links, we can substantially expedite
the process of connecting DUTs. Second, when booting up
the multihost testbed, with fewer cross-host links to create,
the overall bootup time can also be reduced.
Problem Model. We model the cross-host link minimization
problem as follows. Given a graph G = (V,E,WV ,WE), where
V is the set of vertices, E is the set of edges, wv ∈WV is the
weight of node v and we ∈WE is the number of links between
the vertices connected by e. In practice, we find that memory
usage is usually the bottleneck. Thus the node’s weight is the
memory a node needs, which is constrained by the server’s
total amount of available memory C. Given the server capacity
C, the goal is to find a partition P for V with n disjoint sets
V1, V2, ..., Vn.

min ∑
i, j

∑
e∈Ei j

we

s.t. 1≤ i, j ≤ n

Ei j = E ∩ Vi × V j

V = V1 ∪ V2 ∪ ... Vn

Vi∩V j = /0

∑
v∈Vk

wv ≤ C,1≤ k ≤ n

(1)

Partitioning Algorithm. This is a graph partitioning prob-
lem, which is NP-complete [56]. It has also been widely
studied in previous literatures [21, 56, 60]. In the field of
social networks, the problem is called community detec-
tion [18, 22, 31]. Namely, detecting closely connected ver-
tices in a graph merely based on the links rather than other
attributes, which is different from clustering.

To solve the problem, we explore the traditional community
detection algorithm [31]. The traditional approach begins
with a set of all n vertices in the graph, with no edges between
them. Then, it adds edges between pairs one by one in order of
their weights. As edges are added, the resulting graph shows
a nested set of increasingly large components (connected
subsets of vertices), eventually forming a partitioning scheme.

We made a few modifications to the traditional commu-
nity detection algorithm to solve the optimization problem
(1). First, we define the edge weight when merging two com-
ponents with newly added edges as the geometric mean of
the two components’ weights. Second, we add a capacity

Core devices Core devices

Vendor A Vendor B

Production network Emulated network

Plane 1 Plane 2 Plane 1 Plane 2

DUT

Figure 8: DUT sampling and topology expansion.

constraint to the traditional algorithm to ensure the size of
each partition does not exceed a single host memory capacity.
Last, to avoid being trapped in a local optimum partition-
ing scheme, we follow an exponential stochastic process to
randomly choose the next edge to add to the graph. These
modifications ensure that the algorithm generates a scheme
with well-balanced partitions, all within the server’s capacity.
We defer the detailed algorithm pseudocode to §B.

5 Connecting DUTs to Canary

For a maintenance request, if DUTs are not in the canary
testbed, Crescent needs to connect these DUTs to the canary
testbed, along with the intermediate nodes between them.

5.1 Topology Expansion

As mentioned in §2.1, the configuration on non-core devices is
auto-generated, and DCN topology is highly standardized. We
take advantage of this simplicity and standardization to do a
more controlled expansion. While finding a generic algorithm
that works for all networks may be challenging, we have
successfully tested this strategy in hundreds of maintenance
requests without causing any issues in production.

When expanding from DUTs, the algorithm ensures that
each node has at least one neighbor for each vendor, level,
and plane. The number of devices included in the expansion
process grows exponentially. However, given that there are
at most 3 to 4 levels from the canary testbed to the lowest
non-core device (i.e., ToR), at most 3 different vendors on the
same level in our DCN, and tens of planes, each DUT will
only expand to tens of devices to establish paths up to the
canary testbed at worst.

If DUTs are on the lower level, they also exhibit similar
routing behavior per level. And we can apply the same expan-
sion rules to select DUTs for emulation during maintenance.

Figure 8 presents an example of applying the algorithm on
a change with 8 DUTs in a plane. It only shows the result for
two planes. In this example, all 8 ToR DUTs have a similar
configuration, and the devices belong to two vendors. After
sampling, we reduce the emulated DUTs to 2. And besides
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the 2 DUTs, we only emulate 7 instead of 24 additional nodes.
We explain the expansion algorithm in §C.

5.2 Dynamic Connection
To connect the DUTs to a canary, Crescent sends a new topol-
ogy input to all the host agents of the canary testbed. Each
agent compares its local topology information with the newly
received topology to find the new links it needs to create. Sim-
ilarly, when removing links, the local agent must determine
the existing nodes as well as the links it needs to destroy based
on the topology information.

CrystalNet [41] does not support dynamic link addition
and removal; thus, we extend its techniques to enable this
functionality. Link addition/removal requires rebooting nodes
on both ends of the link because no vendor image supports dy-
namic interface addition/removal, i.e., software switch OS can
only detect interfaces during bootup. To solve this issue, we
decouple the network stack from the actual DUT container’s
runtime. For each actual DUT container, we create a container
to hold the network stack for the DUT container. This way,
links can be added after stopping the DUT container, and we
can restart the DUT after adding all the new links.

6 Proactive Verification and Monitoring

We run various verification and monitoring tasks to test, an-
alyze, and troubleshoot the changes made in the emulated
network before pushing it to production. Motivated by our
incidents (§2.2), our tools are tailored to catch the following
behaviors: routing loop, blackholes, unexpected ECMP reduc-
tion, and unexpected route withdrawal/change/churn. We run
four major tasks to cover these issues.
Config Checker. A static configuration analysis tool similar
to RCC [26] analyzes the routing-related segments of the
parsed switch configurations to identify basic syntactical and
semantical errors. We first convert vendor-specific configu-
rations into a vendor-independent format. Then our config
checker analyses them to identify common errors like un-
defined variables [26] (referring variables without defining
them), configuration dissimilarity (configs deviating from the
template [38]), etc. This tool’s primary goal is to detect non-
standard configurations on non-core devices and to identify
any new configuration errors on DUTs.
Route Differ. Our route-differ aims to detect local forwarding
changes at each node. It periodically captures the emulated
nodes’ latest FIB (Forwarding Information Base) and com-
pares it to the previous snapshot to detect route changes. A
centralized full-scale implementation may not perform well
in emulation due to resource scarcity. As a runtime optimiza-
tion, we developed a lightweight distributed version to run
the diff locally within each container and only send the result
to the central process for aggregation. The route differ plays
a crucial role in identifying incidents that lead to reduced

ECMP next hop count, resulting in congestion (e.g., Incident
B as discussed in §2.2). Additionally, this helps in detecting
unexpected additions or removal of routes.
Pingmesh. We run end-to-end ping connectivity tests between
all the emulated servers of a network. It is much simpler
than the original Pingmesh [33]. We run a script inside each
emulated server to ping the other IPs and to only send the ping
failure messages to the central process for aggregation. The
main objective of this task is to identify connectivity-related
incidents, e.g., Incident A in §2.2
Data Plane Verifier. Data plane verifiers (DPV) model how
packets will be sent in the network across a set of forwarding
tables and verify if they satisfy specific policies, like detect-
ing routing loops, blackholes, waypoint violations, etc. We
built our DPV based on APKeep [58] with customized op-
timizations. The occurrences of blackhole and routing loop
incidents are primarily detected by DPV.

7 Evaluation

In this section, we evaluate Crescent performance for (1) the
time to connect different numbers of DUTs to the canary
testbed, (2) canary testbed bootup time at different scales, (3)
the time to run the most commonly used MOP commands for
a canary testbed, and (4) the time to run various verification
and monitoring tasks.

We show the impact of three different partitioning schemes
on the performance metrics. The first scheme is random parti-
tioning that assigns all n emulated nodes to k hosts randomly,
so that each host has n

k nodes to run. In the experiment, we
find that the random partitioning scheme over the original
testbed creates too many cross-host links, which prevents the
testbed from booting up successfully. The second scheme is
done by our proposed algorithm (§4.3). We call it Crescent
scheme. The last scheme is done by manually partitioning the
canary testbed into k parts, with each part containing nodes
within a specific geographic affinity region This scheme is
referred to as the Geo-manual. The Geo-manual scheme is
provided by one of our network experts who is familiar with
our network architecture.

We do all the experiments on a dedicated cluster of bare-
metal servers, each equipped with a 2.10GHz 128-core CPU
and 500GB DDR4 RAM. Currently, a canary testbed with-
out any connected DUTs takes k = 4 servers to run. Unless
otherwise specified, all results shown in this section are the
median over 10 runs.

7.1 Connection Time

The Crescent partitioning scheme (§4.3) minimizes the num-
ber of cross-host links. Thus it is expected to outperform
random partitioned testbeds when connecting DUTs. The
connection time is measured as the time to establish cross-
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(a) Connection time. (b) Bootup time.
Figure 9: Connection time and testbed bootup time.

host links between two pre-existing testbeds (i.e., canary and
a small testbed with DUTs).

Figure 9a shows the testbed connection time for differ-
ent numbers of neighbors (i.e., aggregation level devices) to
connect to the canary testbed. The geo-manual scheme al-
most yields the same connection time as the Crescent scheme,
while it takes 2-3 times longer to connect the same testbed to
the canary for the random scheme. This is because the random
scheme has the most cross-host links. Note that connecting
DUTs to the canary testbed yields a much better performance
than creating a new large-scale canary testbed. For example,
it only takes about 2 minutes to connect a DUT to the canary,
while it takes about an hour on our platform to create a new
canary testbed, resulting in a 30× performance improvement.

7.2 Bootup Time
We show Crescent’s scalability by adjusting the size (i.e. the
number of nodes) of the canary testbed. We define scaling
factor as the ratio of the size of a scaled canary testbed over
the size of the original canary testbed. For example, if the
original canary testbed contains N nodes, and the scaled ca-
nary testbed contains 0.75N nodes, then the corresponding
scaling factor is 75%. When scaling down the canary testbed,
we sample core devices on the spine level to ensure that the
canary remains completely interconnected. When scaling up,
we add more non-core devices to the canary testbed. In this
experiment, we set the number of hosts proportional to the
size of the scaled testbed. For example, given that each host
runs about 25% portion of the original canary testbed, we use
5 hosts to run a 125% scaled testbed.

Figure 9b shows the system bootup time with different
scaling factors for the three partitioning schemes. It shows
only Crescent scheme is scaling, while both the other two
stop scaling at a certain point, i.e., 100% for Random and
125% for Geo-manual. A scheme is considered not scalable
when it takes too much time to boot up a new testbed. In this
experiment, we set the limit to 2 hours. The reason that the
Geo-manual strategy fails to scale is because there are a few
DCNs whose size are much larger than the others, thus it ends
up with an imbalanced partitioning scheme when adding non-
core devices. Crescent partitioning scheme also outperforms
the other two in terms of bootup time. For example, it is 20×
faster to boot up the original canary testbed (i.e., 100%) with

Crescent partitioning scheme than the random partitioning.
We need to reboot canary testbeds occasionally. For ex-

ample, when there is a significant change to our production
network (e.g., a new DC or a new backbone dataplane is
added), we need to reshard the testbed to rebalance all the
partitions. To that end, we use the proposed algorithm (§4.3)
to generate a new partitioning scheme, then reboot canary
testbeds in production with the new partitioning scheme one
by one. During the service reboot, we want to introduce min-
imum impact to the online service, i.e., DUTs of planned
maintenances can still connect to the running canary testbeds.
In that case, Crescent scheme exhibits a better bootup time,
about 10% faster than Geo-manual scheme. Moreover, the
Geo-manual strategy stops scaling when running 125% size
of the original canary testbed. This is because our global net-
work is not geo-graphically balanced, i.e., certain regions may
have more devices than others. Consequently, we may need
to manually divide these regions to rebalance the network.
Nevertheless, as our network expands, manually rebalancing
the graph becomes increasingly challenging, even infeasible.

After booting up a canary, it’s necessary to periodically
update its configuration to align with the latest changes in
our production network. Although more than 50% network
changes occur on core devices (3), typically only a small frac-
tion (less than 10%) of the network undergoes changes in
canary. In the worst-case scenario, where the entire canary
testbed needs updating, it takes an average of 208.4s to com-
plete the process, which includes fetching, parsing, uploading,
and reloading configuration in the emulated node. Given that
we update the canary on a daily basis, the 3min update time
is almost negligible for our platform in practice.

(a) Traffic drain. (b) Traffic undrain.
Figure 10: Convergence time with different operations.

7.3 Network Convergence Time
In this experiment, we show that the emulated network can
converge quickly after applying MOP commands to different
levels of devices. We test the traffic drain operation, which
is one of the most commonly used operations in network
maintenance. We test the operation in the canary testbed
across various levels of devices, including ToR, lower level
aggregation (LA), higher level aggregation (HA), lower level
spine (LS), and higher level spine (HS) devices. We use a
BGP listener to collect all BGP update messages from all
the emulated nodes in the canary testbed. The convergence
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Partitioning
Task Runtime (s) Random Geo-manual Crescent

route-diff 2.31±0.2 1.58±0.11 1.57±0.19
pingmesh 2±0.5 1±0.3 1±0.5
DPV loop 52±6

DPV reach-diff 55±4
config check 21±1.2

Table 2: Evaluation of proactive task performance.
time is measured as the duration from the time an operation
is issued to the time the last BGP update message is received.

Figure 10a shows the convergence time for traffic drain
operations on different levels of devices. Surprisingly, the
random partitioning scheme converges faster than the other
two schemes. The reason is that the overall convergence time
largely depends on the route update processing time instead
of the route propagation time. Since both Crescent and geo-
manual scheme tend to put the geographically close nodes
on the same host, and most route updates happen within the
same DCN, the host that runs the nodes of the DCN becomes
the bottleneck for route update processing. Whereas, in the
random scheme, the nodes that get affected by this operation
are spread across all hosts, thus can process the route updates
much faster with more resources. Figure 10b also shows the
convergence time for undraining traffic after maintenance is
done on the device. Overall, as depicted in both figures, the
emulated network can converge very quickly, i.e., within 10s.
Compared to other overhead, such as testbed connection time,
the network convergence overhead is negligible.

7.4 Verification Time
We conducted four experiments, each with eight DUTs. After
connecting the DUTs and network convergence, we execute
multiple verification and monitoring tasks. Table 2 displays
the average runtime for all experiments across all partition-
ing schemes. For DPV, we list the result of loop check and
reachability difference (reach-diff) tasks. The reach-diff tasks
compute end-to-end reachability differences for all network
traffic classes. Since DPV tasks model and analyze O(100K)
routes for O(1K) devices, they have a longer runtime than
other tasks. The config checker has the next longest runtime.
These centralized tasks fetch and send route/configs to a verifi-
cation service and remain agnostic to the partitioning scheme.
Route diff and pingmesh are lightweight, distributed tasks
executed inside the containers, resulting in a faster runtime.
Both the Crescent and geo-manual schemes exhibit similar
runtime results for these tasks. And the random scheme shows
a slight increase in runtime. Overall, it takes approximately a
minute to verify the network for all tests.

8 Beyond Network Change

Crescent’s primary mission was to prevent change-induced
network incidents. Meanwhile, we have found Crescent help-

ful in many other use cases.

8.1 Catching Regression Under Failures
Some network changes may not trigger immediate impact
until certain failures (e.g., link down) events occur. This has
led to a few outages in the past. To expose such deferred
impact from a network change, we run periodic workflows
on Crescent to catch regressions in the network for various
failure scenarios. We import the latest configurations from
production networks and inject failure events such as a node
or link down for critical parts of the network. Some significant
errors we have identified so far include:

1. A border device missing a critical configuration that could
lead to routing loops under specific link failures.

2. A global WAN device missing routes for specific regions
due to misconfiguration. This could cause blackholes in
case of another WAN device failure.

3. A newly-added configuration having incorrect community
commands that could redirect a large volume of traffic to
the management device, leading to congestion.

8.2 Self-Service Platform
Crescent provides rich user interfaces, including a web portal
and chatbot, to assist users in creating emulation environments
for any purpose.
Network Design Evaluation. When building a new network
or evolving an existing one, our planners need to evaluate
multiple design choices and conduct feasibility studies before
coming up with the final MOPs. They leverage Crescent to
create large testbeds, which would cost much higher if using
physical devices. In one case, they found tens of bugs in their
configuration templates.
Device Behavior Comparison. Cautious about VSB, our
operators use Crescent to test the vendor software for non-
standardized behaviors. One of these tests helped us discover
VSB regarding BGP route aggregation. We observed that the
inherited attributes for the aggregate route differed among the
vendors. For example, some did not inherit the AS-PATH at
all, while some inherited the common AS numbers.
Incident Reproduction. Crescent serves as a learning plat-
form to reproduce past incidents, which is used to refresh our
memory and educate new hires. Such training helps us avoid
repeating similar mistakes from the past.

8.3 SDN Testing
SDN-based traffic engineering (TE) [36,39,45,54] has played
an important role in our networks. A high-fidelity testbed is
needed to test the correctness of the TE software, including
the controllers and their dependent components. Small-scale
physical testbeds are helpful but cannot scale to the same size
as the production network. Besides, multiple TE projects may
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compete for limited physical testbeds, with high overhead to
reset the environment during handover. Instead of waiting for
days to use physical testbeds, it takes minutes for TE devel-
opers to create a production-like environment using Crescent
for both component and integration tests of TE software.

9 Discussion

Crescent has been deployed in ByteDance since 2020. It has
been serving tens of network change requests per week. This
section shares our lessons learnt from its deployment and our
thoughts for future work.

9.1 Lessons Learned

Road To Enforcement. Crescent has been integrated with
our production network change workflow since its early days.
But as shown in Figure 1b, it took almost two years from the
initial rollout of Crescent to enforce it as a mandatory step
for changing critical devices in production networks. Other
than resource constraints, the major blockers were the lack
of vendor images and the unfriendliness of user interfaces.
We should partner with switch vendors earlier to develop and
qualify the images as a collaborative effort. And we should
involve our users more closely when designing user interfaces.
Unknown Image Limitations. Switch vendor images are
blackboxes to us. Many of their limitations are unknown or
undocumented. Some of these limitations may even manifest
in a surprising way. For example, when we created a certain
amount of ports in a container running a vendor image, its
LLDP process started crashing while its layer 3 and above
protocols, including BGP, worked fine. We did not notice the
issue until the host ran out of memory. It turned out that the
vendor used memory to store all the logs, and the huge-sized
LLDP crash logs exhausted the host memory.
Fidelity Can Backfire. Crescent’s mission is to prevent net-
work incidents. But as it is deployed in production hosts,
failure to isolate from the production network could trigger
unexpected consequences. For example, each emulated de-
vice connects to the host via a management or CPN interface
through the docker bridge. Docker would add a default route
automatically for such interfaces. In one case, we did not
remove such a default route, and the emulated device sent
syslog messages to the production collector, which could not
distinguish it from the production device. This caused false
alarms as the syslog reported many down links. It cost our net-
work operators tremendous efforts to figure it out. We added
the fix to remove the default route from each container and
disable the syslog configuration during adaptation.
Kernel Tuning Can Help. In addition to employing multiple
hosts, we explored increasing the number of containers for
each host to support emulating larger networks. But, we failed
to create a large number of containers while both CPU and

memory usage were well below the host limits. After dig-
ging into the container logs, we spotted an error message and
realized certain kernel settings for inotify should be relaxed.

9.2 Incidents Missed
The deployment of Crescent has significantly reduced the
number of incidents, as demonstrated in Figure 1b. Emula-
tion and verification using Crescent has helped detect and
prevent various errors from occurring in production, e.g., con-
figuration syntax errors and routing loops. However, there
are still some network incidents that cannot be captured ad-
equately with Crescent. For instance, we cannot identify is-
sues related to traffic dependencies. One such incident was
caused by hash polarization or imbalance, emerging from
an unevenly balanced traffic load after being hashed twice
or more. Additionally, high-level Quality of Service issues
such as congestion, latency, and jitter can cause traffic-related
complications. Emulation also lacks the potential to capture
hardware-related issues. These include common problems
like device failures, link flapping, etc, and rare issues like
reduced Optical Transport Network (OTN) capacity leading
to packet losses, etc. Moreover, in some cases, incidents may
result from other components interacting with the network
and its configuration, such as malfunctioning management
software like a Netconf controller. While we have some re-
gression tests with failures, these still need to be exhaustive,
as certain failures could lead to never-emulated scenarios.
Nevertheless, we constantly look for potential problems and
enhance our emulation testing pipeline.

9.3 Future Work
Crescent does not attempt to search the tight safe boundary, as
we think the correct boundary, if it exists, depends on certain
assumptions of the routing policies. One idea to explore in
future is to derive the routing policies from production net-
work configurations, confirm them with network operators,
and then add invariant checks for these policies. The derived
routing policies can help guide the search of the boundary.
Selecting the appropriate boundary is one method of reducing
emulation resources without impacting fidelity. Another op-
tion is to investigate reducing the size of the emulation image
by customizing it to include only relevant routing features.

Crescent presents network emulation as an alternative to
CPV, but both can be used in combination to achieve high
fidelity and performance. CPV can model specific aspects
of the network, while emulation can emulate the remaining
components to incur minimal performance overhead.

The baseline topology may evolve, e.g., adding more core
devices to the production network. Today Crescent has to re-
create the canary testbed with re-partitioning. We are explor-
ing the possibility of updating the canary testbed dynamically
with minimum overhead.
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We plan to quantify Crescent’s fidelity by comparing the
data plane of the emulated network with the one in production.
The key challenge is that the data plane in production is more
dynamic due to link flaps, controller programming, etc.

Finally, we anticipate that the number of emulation jobs
will increase over time on multiple canaries. The scheduler
plays a critical role in determining which job to schedule
first. We are exploring using different scheduling strategies to
handle incoming requests so that we can handle those requests
not merely based on the request order, but also based on other
factors, e.g., request emergency level.

10 Related Work

Network Emulation. Network emulation allows network
operators to evaluate and design networking solutions. In
today’s landscape, commercial and open source network em-
ulators, such as EVE-NG [4], GNS3 [8], DockerTopo [3],
Mininet [40], Maxinet [53], vrnetlab [10], and SEED [23], are
widely adopted by network operators for small scale network
tests. Nevertheless, these emulators prove inadequate when it
comes to large-scale network emulation involving thousands
of nodes, primarily due to their lack of features such as dy-
namic lab formation (e.g., automatic node and link creation)
and automatic configuration adaptation. CrystalNet [41] is
the closest work to ours, which enables a large scale emula-
tion for DC networks. Our work is inspired by CrystalNet,
but with several enhancements on top. First, we find the al-
gorithm to identify a safe boundary proposed in [41] is not
safe for us. As a result, we choose to always include core
devices in emulation. Second, we propose a greedy algorithm
to address the graph partitioning problem when running a
large-scale testbed using a multihost setup. Note that running
a large-scale testbed with a better partitioning scheme can
benefit any multi-host setup, no matter with VMs on a cloud
infrastructure or with baremetal servers. In another word, the
deployment strategy (where to run) addressed by CrystalNet
is orthogonal to the partitioning scheme (how to run). Last,
we made other efforts to enhance system automation for Cres-
cent, e.g., combining emulation with automatic verification,
config adaptation, etc. In summary, all of these emulators lack
the features required for automatic timely verification through
high-fidelity large-scale emulation, such as cross-vendor adap-
tation, dynamic link/node alterations for connecting DUT, etc.
Network Verification. Over the years, researchers have devel-
oped many DPVs and CPVs. DPVs usually analyze devices’
forwarding rules and detect reachability policy violations. Re-
cently researchers have added optimizations like making them
incremental based on data plane updates [14,34,58], partition-
ing packets into equivalence classes to reduce the input search
space [35, 58], parallelizing verification by dividing global
properties to local checks [37], etc. CPVs usually model the
network control plane to detect similar reachability violations.
Similarly, researchers have added optimizations like making

them incremental based on configuration updates [57], model-
ing policies as graph properties [12], using Packet and Failure
Equivalence Class [59] and abstract interpretation [15, 16, 30]
to reduce the input search space, etc. Hoyan [55] is a verifier
that aims to model vendor software behavior. It uses black-
box testing to detect modeling deficiency but requires manual
intervention to correct the model. We can integrate Crescent
with any of these verifiers.
Configuration Management. Operators have made many
attempts to automate configuration management. Network
synthesizers use high-level policy intents to produce policy-
compliant configurations. Some [17, 24] create brand-new
configurations from scratch. Whereas others [11, 25, 46] in-
crementally update the existing configurations. Some are very
platform-specific, like Facebook’s configuration management
and syntax generation tool called Robotron [50]. NAssim [20]
creates configuration models from device user manuals using
NLP and deep-learning techniques. However, these are still
limited in terms of feature coverage. Crescent can operate or-
thogonally to assist these tools’ development for troubleshoot-
ing, debugging, etc.

11 Conclusion

Network changes are a major source of incidents. As a solu-
tion, we have developed Crescent, a large-scale high-fidelity
emulation platform coupled with timely verification and mon-
itoring tools. Instead of emulating the entire network, we
exploit the symmetry and modularity of data center networks
and build canary testbeds that emulate all core devices and
sampled non-core devices. To achieve high scalability, we
use a multi-host setup and propose a graph partitioning algo-
rithm for a scalable node-to-host assignment to reduce the
overhead due to cross-host links. We support dynamic link
addition/removal to allow expansion/modification to the ca-
nary testbed on the fly. Our experience running Crescent has
demonstrated its effectiveness in detecting problematic net-
work changes, especially those resulting from undocumented
vendor-specific behaviors.
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A Network Emulation

In this part, we describe the detials about how we emulate
network devices, how we wire these emulated devices via
various types of virtual interfaces (§A.2), and how we emulate
edges (§A.3) and control plane network (§A.4) with Crescent.

A.1 Emulating Network Devices

Most of our switch vendors only provide VM images, while
a couple also provide container images. Table 1 outlines all
the vendors’ images supported by Crescent, along with the
least resources (e.g., CPU, memory) required to boot up. For
vendors that support both VM and container images, we use
container images as default because they are more lightweight
than VM ones. However, if a device uses functions not sup-
ported by container images but supported by VM images, e.g.,
Segment Routing [28], we will emulate it with the VM image.
Some vendors provide multiple VM images of different specs.
For example, v4 provides two VM images: one supporting
more ports while consuming more resources. Thus before
emulating a device of v4, we count the number of ports the
device needs to emulate. If it is below the limit, we use the
image with a lower resource requirement.

Native Vendor Image Support. Crescent uses containers as
the basic units to mock up network devices [3,4,41]. Crescent
treats VM images the same as container images by wrapping
the VM image, a KVM hypervisor, and other libraries into
a container image. We host a centralized image registry for
hosts to pull the images from. By making this implementation
choice, we are able to manage all emulated devices using a
single underlying runtime system. Specifically, Crescent uses
the Docker engine to manage all images and containers.

A virtual network interface attached to a container with a
VM running inside are mapped to an interface of the VM via
a MacVTap interface [6], which forwards ingress traffic to
or egress traffic from the guest OS’s corresponding virtual
interface without traversing guest OS’s kernel (e.g., container
1,2, and 3 in Figure 5). Inside the container, we use virtio [44]
as the default network interface adapter attached to the guest
VM to achieve a better performance. However, due to com-
patibility issue, some vendor’s image only supports obsolete
network adapters such as e1000 [2].

While there may be some additional overhead in wrapping a
VM image into a container and routing traffic through virtual
interfaces compared to running guest VMs directly on the
host, this overhead is negligible in comparison to the time it
takes for network convergence. For example, our evaluation
using vendor v3 shows that the additional overhead resulted
in about 2×10−4s of end-to-end ping latency, while network
convergence could take several seconds.

A.2 Emulating Network Links

We use different virtual network interfaces to wire the emu-
lated devices. We emulate a link on the same host by a veth
pair directly connecting two virtual interfaces attached to two
emulated devices. We must put a virtual network interface
attached to a container running with a container image into
the container’s namespace before its containerized switch OS
boots up [41]. Otherwise, the switch OS cannot recognize the
virtual network interfaces. To deal with this issue, Crescent
pauses a container immediately after the container starts run-
ning so that its network namespace is ready to attach virtual
interfaces before starting the OS.

We setup a virtual link across two hosts with a VXLAN
tunnel via the OVS bridge. One end of a veth pair is attached
to the emulated device container network namespace, and the
other end is attached to the OVS bridge. OVS is responsible
for encapsulating and decapsulating packets across hosts. We
always reserve the first virtual interface (i.e., eth0 in Figure 5)
for the management port of the emulated device. The man-
agement port’s virtual interface is then attached to the host’s
default Docker bridge, which is exposed for users to log into
the emulated device via SSH or Web UI.

Figure 5 illustrates how we wire devices on the same host
and across hosts. Containers running a guest switch VM inside
(e.g., containers 1-3 ) use MacVTap to pipe traffic from the
virtual interfaces attached to the VM to the virtual interface
attached to the container or vice versa. For a container booted
up from a container-based image, e.g., container 4, an end of
the veth pair is attached to the container directly.

A.3 Emulating Edges

We consider three types of network elements at the edge: ISP,
cloud, and servers under ToR, over which we have no, partial,
and complete control in reality, respectively.

ISPs and clouds peer with our border devices via BGP. For
the minimum requirements, Crescent must be able to inject
the routes received from the edges into our network to ensure
some properties, e.g., the traffic to certain IP prefixes must be
routed through the gateway between our network and a public
cloud rather than the gateway to an ISP’s network. We have
a partial control over the cloud peers (such as the ability to
specify route policies), while no control over the ISP peers.
As mentioned in [41], one way to replay the routes received
from cloud peers is to inject these routes directly into our
border devices using BGP speakers. However, the simplicity
of this approach comes at a cost, as it can only be used to
replay the routes announced from the edge to our network, but
not vice versa. For example, if we want to observe the routes
announced from our network to cloud peers (e.g., to avoid
route leaks [49] from us), we would have to employ another
component to collect the routes announced to the cloud peers,
then analyze the collected routes later.
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Crescent emulates these edge peers using a lightweight
switch container image, as opposed to the proposed approach
in [41]. Crescent adds loopback and static prefixes to an
emulated device (which need not be identical to the real-world
cloud peers) to establish BGP connections with our border
devices and then configures these devices to announce the
routes. By doing this, we are also emulating the cloud peer’s
behavior in addition to merely injecting routes to our border
devices, which allows us to capture not only the changes in
FIB of our border devices but also those of the emulated cloud
peers with our proactive monitoring tools (§6). Besides, this
approach allows us to emulate and validate route policies over
which we have control on some public cloud peers in our
emulation environment.

In a production DC, there are tens of servers under each
ToR, where we have full control of their network stack. For
ToR level devices, Crescent connects at least one virtual server
to it to run proactive monitoring such as pingmesh (§6). These
virtual servers are emulated using lightweight Linux images
by default. We also support running switch images in these
virtual servers, to help emulate the scenarios where advanced
users establish BGP sessions between a server and the ToR.

A.4 Emulating Control Plane Network

Our networks are impacted not only by device configuration
changes, but also by traffic engineering (TE) controllers that
install BGP routes to override the default routing behaviors. It
is critical to ensure the reliability of the software implemented
for the TE controllers and their dependent components, e.g.,
BGP speakers for route announcement and BGP Monitoring
Protocol (BMP [47]) collector for route collection. Instead
of competing for limited physical testbeds, we utilize Cres-
cent to provide a testing environment for these SDN software.
One way is to containerize these SDN software and then
let them establish connections to emulated devices through
the emulated network. Nonetheless, this in-band approach
requires TE developers to wrap their software into container
images, which takes extra efforts if the software was not orig-
inally developed for a containerized deployment. Also it is
not resource-efficient to emulate the in-band network while
the controller manages only a small portition of the network.
Crescent provides a more flexible option by using a dedicated
Linux bridge to emulate Control Plane Network (CPN) [27].
CPN can be used to establish out-of-band connections be-
tween emulated devices and software components in a way
that is transparent to the software under test. This method
eliminates the need for the SDN software to be enclosed in
containers, thereby reducing the amount of time required for
our software developers to set up the test.

B Multi-Host Partitioning Algorithm

Algorithm 1 shows the pseudocode of the heuristic multi-host
partitioning algorithm proposed in §4.3.

C Topology Expansion

Algorithm 2 presents our topology expansion algorithm. This
algorithm primarily takes the devices under change and ex-
pansion_width (w) as input and returns the emulated nodes
as output. It uses a variable N to track all traversed nodes and
map them to their traversed neighbors.

The algorithm first expands the topology upwards (line
5) and downwards (line 6) to add upstream and downstream
neighbors. This expansion uses a modified depth-first search
(DFS) algorithm called MV _DFS (line 11). MV _DFS stands
for multi-vendor DFS. It is a directional DFS to expand the
network by w and add all required vendors per level. For each
node, MV _DFS does not explore all the node’s neighbors. It
terminates when it has added at least w neighbors and ensures
they represent all the unique vendors attached to this node
(line 28). The algorithm customizes the for-loop traversal in
line 21 in two ways. It prioritizes nodes already selected for
emulation. This strategy ensures we reduce the number of
expanded nodes. And it also prioritizes nodes belonging to
vendors that it has yet to explore in that loop. This strategy
aims to satisfy the condition in line 28 as soon as possible.
During MV _DFS, it adds nodes (line 22) representing either
the leaf or top node or those representing nodes with newly
explored neighbors (line 26).

Next, the algorithm expands the network horizontally (line
7). It ensures that for each device under change, we add other
nodes from all vendors that belong to the same level (lines 33-
34). Again, the algorithm customizes this to prioritize nodes
already selected for emulation.
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Algorithm 1: Randomized Multi-Host Partitioning
1 Preprocess: Generate an undirected weighted graph (V,E). For

every partition p, we have a corresponding node p′ in V . And for
every pair of partitions p1, p2, we have e = edge(p′1, p′2) in E and
e.weight = # of links between p1 and p2. We also define the cost
of a node p′: p′.cost = sum(memory_cost of each node in p).

2 Input: V,E, partition_memory_limit
3 Output: map(v→ n) for each v in V // map each node to a

partition number

4 u f ← union_find(V ); // assign each v in V to a new set
5 non_zero_edges← [e for e in E if e.weight ̸= 0] ;
6 zero_edges← [e for e in E if e.weight = 0];

// Instead of always choosing the edge with the
largest weight,

// we sample(without replacement) from a distribution
based on the edge weight.

7 non_zero_edge_distribution← distribution over non_zero_edges,
p(ei) = ei.weight/sum;

8 zero_edge_distribution← distribution over zero_edges,
p(ei) =

√
ei.src.cost× ei.dst.cost/sum;

9 while non_zero_edge_distribution is not empty or
zero_edge_distribution is not empty do

// Merge the edges with non-zero weight first. If
all remaining edges has zero weight,

// use the geometric mean of src.cost and dst.cost
as weight.

// sample_without_replacement: with replacement, a
value can be selected multiple times.

// For each edge we only visit it once, so we use
without_replacement here.

10 if non_zero_edge_distribution is not empty then
11 e←

non_zero_edge_distribution.sample_without_replacement();

12 else
13 e←

zero_edge_distribution.sample_without_replacement();
14 src_root← u f .get_root(e.src);
15 dst_root← u f .get_root(e.dst);
16 if src_root = dst_root then
17 continue;
18 if src_root.cost +dst_root.cost > partition_memory_limit

then
19 continue;
20 new_root← u f .union(e.src, e.dst);
21 new_root.cost← src_root.cost +dst_root.cost

22 m←map();
23 for v in V do
24 m[v]← indexof(u f .get_root(v));
25 return m

Algorithm 2: Topology Expansion
1 Global inputs: S: devices under change, w: expansion width;
2 Global output: T : emulated devices, initialized to S;
3 Global variables: N: map node to a set of its neighbors;
4 procedure TOPO_Expansion()
5 EXPAND_VERTICAL(up);
6 EXPAND_VERTICAL(down);
7 EXPAND_HORIZONTAL();
8 Input: dir: direction (up or down);
9 procedure EXPAND_VERTICAL(dir)

10 for s ∈ S do
11 MV_DFS(s, dir);
12 if N has changed then
13 for n in new nodes in N do
14 T .add(n);

15 Input: s: visiting node;
16 procedure MV_DFS(s, dir)
17 if s ∈ N then
18 return
19 newN←{};
20 D← s.neighbors(dir);
21 for n ∈ D do

// The for loop will prioritize nodes already
in T and belonging to untraversed vendors.

22 if n is top or leaf node then
23 newN.add(n);
24 else
25 MV_DFS(n, dir);
26 if N has changed then
27 newN.add(n);
28 if size(newN)≥ w and vendors(newN) = vendors(D)

then
29 break;
30 N[s]← newN;
31 procedure EXPAND_HORIZONTAL()
32 for s ∈ S do

// Prefer selecting n already in T −D
33 if L(s) ̸= /0 s.t. L represents other nodes at same level then
34 ∀v ∈ vendors,∃n ∈ L(s,v) s.t. T .add(n);
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