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ABSTRACT
Networks are error-prone due to misconfigurations, and it
is hard to identify the root causes in the configuration and
find a repair due to the size and complexity of networks
running distributed routing protocols. Thus, we advocate
Automatic Configuration Repair (ACR) to reduce the manual
effort. Specifically, we draw some insights from the field of
Automatic Software Repair (ASR), crystallize some lessons
learned from the real-world repair experience of a large
service provider, and propose some directions to realize ACR.
Inspired by the generate-and-validate approach from ASR,
we propose localize-fix-validate as a possible approach to
realize ACR.
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1 INTRODUCTION
Network outages frequently made headlines due to miscon-
figurations, software bugs, and hardware failures [24]. Many
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of these outages last a long time, have a wide and even global
impact, and lead to severe economic loss. A major source of
the outages is misconfiguration. According to our study of a
large service provider (ByteDance), 35.4% of incidents were
caused by misconfiguration.
To detect network misconfigurations and improve net-

work reliability, academia and industry have proposed some
methods, including: (1) Network simulation is based on device
images [11] or customized model [10], simulating the net-
work to predict its behaviors under specific configurations
and failure scenarios; (2) Network verification [29, 30] uses
formal methods to reason about network behaviors against
operator intent, such as k-failure tolerance, loop-freedom,
and blackhole-freedom.

However, existing simulation or verification methods can
only detect issues or reduce the impact rather than resolve
it, i.e., localizing the misconfigurations to blame and repair-
ing the configurations to meet the intent again. As a result,
operators need to do the localization and repair manually.
Such a manual resolving process can be frustrating and

time-consuming, thereby delaying the planned network up-
dates. In ByteDance’s network, operators took more than
30 minutes in 16.6% of cases to localize and repair the is-
sue, with the longest one taking more than 5 hours. The
reason for the expensive overhead is the complexity of the
distributed networks. First, large enterprise networks may
have multiple routing protocols that interact with each other
in several rounds to compute the best routes. Moreover, the
networks may have routers from different vendors, each with
vendor-specific behaviors for implementing some features.
Worse still, multiple generations of network architectures
may coexist, each with distinct routing strategies [11]. Con-
sequently, the causal relationship betweenmisconfigurations
and intent violations is less obvious, making it difficult for
even an experienced operator to identify and resolve the root
cause of an incident.
We advocate Automatic Configuration Repair (ACR) to

help operators localize the root causes and find a repair.
Realizing ACR is challenging in the following two aspects.

Correctness/Effectiveness. An effective repair should not
only eliminate the intent violations but also guarantee not
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Configs Types Lines Ratio

Route Missing redistribution of static route M 20.8%

PBR Missing permit rules in PBR M 12.5%
Extra redirect rule in PBR S 4.2%

Peer Missing peer group M 16.6%
Extra items in peer group M 12.5%

Policy

Missing a routing policy M 8.3%
Fail to dis-enable route map S 4.2%
Override to wrong AS number S 4.2%
Missing items in ip prefix-list S/M 4.2%/12.5%

Table 1: The types of misconfiguration. M=Multiple,
S=Single.
to introduce more violations. However, due to the inherent
complexity of distributed networks, it is hard to reason about
the impact of a repair across devices.

Performance/Scalability. An efficient repair should scale
to large networks with tens of thousands of devices and
finish as soon as possible. Considering that each device can
have thousands of lines of configuration, any of which may
be possible for generating a solution, the search space can be
astronomic. Searching for a feasible repair in such a space is
an NP-Complete problem [25, 26]. Moreover, it is common
for a feasible repair to require the modification of multiple
lines of configuration, which makes the problem even harder.
Existing tools for localizing and repairing faulty configu-

rations include provenance and synthesis methods. In the
following, we show why they cannot address the challenges.

Provenance methods [7, 25, 26] are efficient but not neces-
sarily correct. This is because they reduce the search space to
a relatively small provenance graph so they can identify the
root cause by tracing the source of abnormal events. How-
ever, the identified source may not help to generate a feasible
repair because it may not be the faulty one or will introduce
regressions (§2.3).

Synthesis methods [1, 13] are correct but not scalable. This
is because they use formal methods to completely encode the
network semantics and operator intents as SMT constraints,
so they can guarantee to produce a repair without side effects
by systematically searching for a solution that satisfies all
the constraints. However, it cannot scale to large networks,
because the search space could be extremely large when the
number of constraints grows with network size (§2.3).

In order to address the above two challenges, we conduct
a comprehensive study of over 100 incidents of a production
network, and draw some insights from the field of Automatic
Software Repair (ASR) [12, 20].
Then, we propose the localize-fix-validate approach to

achieve ACR. (1) Localize.We use Spectrum-Based Fault Lo-
calization (SBFL) [3, 16] to localize the suspicious lines of con-
figuration. The intuition behind such a method is that faulty
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Figure 1: Resolving time (mins) of misconfiguration.

lines of configuration contribute more to intent violations,
compared with the correct lines. (2) Fix. We apply change
operators to the suspicious lines of configuration to generate
a set of candidate fixes (referred to as updates). The change
operators are pre-defined based on real-world repair experi-
ence. The intuition is that error types of misconfiguration in
real-world incidents are very limited, allowing us to define a
set of templates for repair. For example, in ByteDance, there
are only 9 types of errors out of over 100 real-world incidents
we have studied. (3) Validate.We use off-the-shelf network
verifiers to check whether the update resolves the violation
without introducing more violations. This step is efficient
owing to the advance of incremental verifiers like DNA [29],
which can incrementally verify the affected intents based
on intermediate results without verifying all of them from
scratch.
Such a localize-fix-validate approach is scalable since it

does not need to explore the whole search space as synthesis
approaches. Based on our experiences in ByteDance’s net-
work, we find that heuristically using pre-defined change
operators strategy is also quite effective since there are only
9 types of errors out of over 100 real-world incidents.

2 MOTIVATION
2.1 Experience of Network Incidents
We investigated more than 100 incidents in ByteDance’s
worldwide network in detail. This section will introduce the
background and motivation for proposing ACR in terms of
root causes and manual effort.

Root cause. In all the incidents we studied, misconfiguration
is the primary root cause, accounting for 35.4%, followed
by hardware failures (34.6%), software bugs (25.3%), and
vendor-specific behaviors (4.7%). Table 1 shows the types of
misconfiguration. We can see that 83.2% of cases are related
to multiple lines of configurations, while more than half of
them are simple and related to specific IP prefixes: missing
static routes (20.8%), PBR rules (12.5%), and ip-prefix list
members (12.5%).
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(a) The process of routing flapping. (b) The configuration snippet of router 𝐴.

Figure 2: The example of routing flapping.

Manual effort. Figure 1 shows the time of the manual repair
process for incidents caused by misconfiguration. The time
was collected by inspecting the duration between the end of
mitigation and the end of the analysis, including localization
and repair. We can see that 16.6% of the cases took more
than 30 minutes, with the longest taking more than 5 hours.
The reason for the expensive overhead is the complexity of
networks using distributed routing protocols and the inef-
fectiveness of commonly used analyzing tools (show route
table, traceroute, pingmesh, etc.)
In the last two years, the percentage of network changes

pre-checked by network verifiers has grown from 20.6% to
67.1%, and most potential incidents due to misconfigura-
tions have been captured. However, after capturing the inci-
dents, operators still need to manually localize and repair the
misconfigurations, which delay the deployment of network
changes. A tool that can automatically localize and repair
network misconfigurations is highly desired.

2.2 An Example Incident
Next, we use an example incident in ByteDance’s network
to show the limitations of existing methods.

The network. Figure 2 shows the example network running
BGP, which consists of four backbone routers (𝐴, 𝐵,𝐶 , and 𝑆),
two Points of Presence (PoPs) and one Data Center Network
(DCN), Figure 2b shows a configuration snippet of router
𝐴, where the as-path override policy (lines 13-16) rewrites
the AS_PATH of all routes received from connected PoP
and router 𝑆 (lines 5-11) to its own AS number (lines 1, 15).
Similar routing policies are also configured on routers 𝐵,𝐶 ,
and 𝑆 , marked in Figure 2a.

The incident. Routers 𝑆 and 𝐶 are not configured as BGP
neighbors until a new reachability intent requires that the
DCN of router 𝑆 access the PoP of router 𝐵, resulting in three

advertisements into the backbone, one of which caused a
route flapping for prefix 10.0/16. The orange arrows in Fig-
ure 2a show the route propagation for 10.0/16. For simplicity,
we only show the AS_PATH attribute of this route. Steps 1, 4,
and 6 rewrite the AS_PATH as the router’s AS number due
to the override policy.

The root cause and repair. Operators found the root cause
was the override policies on𝐴 and𝐶 , which increased the pri-
ority of the route by shortening the length of the AS_PATH.
As a result, router 𝑆(𝐶) mistakenly set the next hop for
10.0/16 to 𝐴(𝑆) instead of 𝐶(𝐵), and announced this route
update into the network. To repair the problem, operators
changed the 0.0.0.0 0 in the ip prefix-list (e.g., line 11 in
Figure 2b) to 10.70/16 and 20.0/16, which only rewrote the
routes originated from the connected PoP and DCN.

2.3 Limitations of Existing Methods
Existing works try to locate or repair the root cause of con-
figuration errors by provenance [7, 14, 25, 26] or synthe-
sis [1, 13] methods. However, these methods either satisfy
effectiveness or efficiency, but none of them satisfy both
requirements.

Provenance-based methods are efficient but not necessar-
ily correct. Specifically, they draw a directed acyclic graph
to record the derivation between network events and trace
the source of abnormal events in the graph to identify the
root cause. Then, an update can be generated by modifying
the value of the identified source. This kind of method is
efficient by reducing the search space to a relatively small
graph, but the update may not necessarily be correct. First,
such a trace can only reveal configurations that are relevant
to the target event rather than localize the responsible ones.
Second, it ignores the interaction between configurations
and may introduce new intent violations.
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(a) MetaProv: 𝑁 = Number of leaf nodes. (b) AED: 𝑁 = 2Number of free variables. (c) ACR: 𝑁 = Number of leaf nodes.

Figure 3: The search space 𝑁 of each method.

For example, the search space of MetaProv [25] is the set
of leaf nodes of the provenance tree (Figure 3a), each of
which is a predicate representing a line in the configuration.
MetaProv may identify that line 11 of Figure 2b needs to be
updated so that it prevents router𝐴 from rewriting routes of
10.0/16. However, the override policy on 𝐶 will still rewrite
the routes received from 𝑆 , making 𝐶 choose 𝑆 as the next
hop for 10.0/16. This will form a forwarding loop between𝐶
and 𝑆 , because 𝐶 is the next hop for 10.0/16 on 𝑆 . Therefore,
merelymodifying the policy on𝐴 cannot resolve the problem,
i.e., it is not a correct update.

To find updates with multiple changes, provenance meth-
ods can extend the search space to the power set of𝑁 , i.e., 2𝑁 .
However, such space is extremely large even in our example
network, i.e., at least 212 for router𝐴, which contains 12 lines
in the snippet.

Synthesis methods are correct but not scalable. Specifically,
they use formal methods to model the network semantics
and operator intent as a set of SMT constraints; if some
intent is not satisfied, the methods introduce a lot of free
variables to represent candidate repairs to the configurations
and solve the new SMT constraints to find a repair. Clearly,
such a SMT-based approach guarantees to provide correct
updates but can not scale to large networks, due to the large
number of SMT constraints and free variables.

For example, the search space of AED [1] is the power set
of delta variables in a syntax tree (Figure 3b), each associated
with a node, representing if the corresponding line of config-
uration is disabled. Additional variables may be required to
add more lines or to modify existing values. Thus, the search
space is at least 212 for this simple snippet, which will surely
be much larger in a hyperscale network.

3 FROM ASR TO ACR
In this section, we discuss two commonly used ASR methods:
the semantics-driven and the generative-and-validate (i.e.,

syntax-driven). We then show the merits of the latter for
ACR based on our experiences.

3.1 Approaches of ASR

Semantics-driven approaches formally encode the repair
problem as a satisfiability problem and solve the problem
with off-the-shelf solvers. The advantage of this approach
is that it can guarantee the repair does not have side effects.
For example, it can transform the repair problem into a set
of SMT constraints and solve it with a Z3 solver [19, 21].
Many existing methods for the synthesis and repair of

network configurations can be seen as variants of the above
semantics-driven approaches. For example, CPR [13], and
AED [1] encode control semantics and operator intents as
SMT constraints, and incrementally synthesize configura-
tions by solving a satisfiability solution, whereas CEL [15]
localizes the root cause by solving a MaxSAT problem.

Generate-and-validate (Syntax-driven) is another type
of approach to ASR. At a high level, it localizes a set of suspi-
cious statements, generates a set of candidate updates for the
suspicious statements, and validates them to discard those
with side effects. [17, 18, 22] Compared to the semantics-
driven method, generate-and-validate is more scalable. This
is because the search space is reduced to the set of updates
that can be obtained by applying change operators on the
suspicious statements.

3.2 Generate-and-Validate for ACR
We believe that the generate-and-validate is a promising way
to realize ACR, based on the following three observations:

(1) The search space of ACR is often limited and pre-
dictable. In a large enterprise network, the role of each de-
vice is relatively clear and fixed, and devices with the same
role tend to have similar configurations. This indicates that
the same error is likely to be repeated across different places.
Thus, it may be possible to use repairs in history to guide
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an update for current incidents, which is a similar intuition
shared by ASR [18, 22]. In ByteDance’s network, we found
only 9 types of errors out of over 100 incidents, limiting the
search space to a small set of historical repair patterns.

(2) Localization can be achieved based on coverage.
Many software fault localizations use test coverage to as-
sess the suspiciousness of a statement [3, 16] based on the
intuition that a statement is more likely to be a faulty one
if it is covered (executed) by more failed tests, which are
the ones that violate the specification. We envision network
configurations share a similar intuition and can adapt such a
technique to configuration fault localization. To compute cov-
erage, we can use network provenance methods like Y! [26]
or coverage computation methods like NetCov [27].

(3) Validation is efficient with incremental network ver-
ifiers. Incremental network verification is well-developed
[29, 30], which can fast check the correctness of a configu-
ration change for large networks in seconds. This reduces
the cost of validating an updateand allows us to try more
updates in less time. Note that in ASR, the validation pro-
cess is often expensive since it needs to recompile and rerun
parts or the whole program [23]. Therefore, efficient network
verification can ensure the efficiency of the repair system.

4 DESIGN OPTIONS
4.1 Fault Localization
Fault localization narrows down the search space by identi-
fying the statements that seem most suspicious as the root
cause. Spectrum-Based Fault Localization (SBFL) [16] is ar-
guably the most popular method.

SBFL scores each statement with suspiciousness, a decimal
between 0 and 1, indicating the possibility of being the root
cause. This technique assumes that the statement most likely
to cause an error is the one most likely to be executed in a
failed test case. Therefore, SBFL counts the number of times
each statement is executed in all test cases and then applies
a formula to calculate the suspiciousness for each statement.
Tarantula [16], one of the most used SBFL techniques,

formally defines the suspiciousness of a statement 𝑠 as:

𝑠𝑢𝑠𝑝 (𝑠) =
𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑠 )

𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙𝑒𝑑

𝑝𝑎𝑠𝑠𝑒𝑑 (𝑠 )
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑

+ 𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑠 )
𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙𝑒𝑑

(1)

where 𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑠) and 𝑝𝑎𝑠𝑠𝑒𝑑 (𝑠) represent the number of failed
and passed test cases that are executed by the statement 𝑠 ,
respectively; Meanwhile, 𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑 and 𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙𝑒𝑑 repre-
sent the total number of failed and passed test cases.
The effectiveness of SBFL algorithm depends heavily on

the quality of the test suite. A test suite with low coverage
may miss errors that are not covered by any test case. A

classic approach to generate a test suite in ASR is to use sym-
bolic execution to compute a set of inputs that can cover as
many code paths as possible [4, 5]. However, we do not have
symbolic execution tools for network configurations. Indeed,
some verifiers [9, 28, 31] can symbolically execute a control
plane model, by making the up/down state of nodes and
links symbolic. It is not clear how to extend them to generate
tests since this requires making the values in configurations
symbolic.

Fortunately, we observe that the specifications to be veri-
fied (e.g., reachability, loop-freedom, and blackhole-freedom)
in our network already covers most errors of interest, and
we can use them to generate test cases. Specifically, each
property in the specification includes a header space repre-
sented by a 5-tuple. For each property, we sample a packet
from its header space as a test, and use a verifier to check
whether this property holds. If the property holds, we add
the packet to the set of passing tests. Otherwise, we will add
it to the set of failing tests.

4.2 Fix Generation
Fix generation defines a set of change operators that limit
the search space and uses a heuristics strategy to generate a
set of updates by applying change operators on the identified
suspicious configurations.

Change operators consist of atomic operators and change
templates. The former modifies one location at a time, while
the latter aims to perform multiple changes each time rather
than a single one.
For ASR, atomic operators often refer to copying a state-

ment from elsewhere, deleting a statement, or changing the
operators or variables in a statement [17]. Network configu-
rations, however, are more concerned with parameters such
as IP prefix, AS number, etc., rather than operators or vari-
ables. As a result, directly copying existing configuration
lines may lead to conflicts (e.g., the same IP addresses are
allocated on multiple interfaces), or inconsistency (e.g., the
AS numbers of BGP neighbors do not match). To guaran-
tee semantic correctness, we choose to solve for values that
can make all previously failed tests pass, based on the SMT
constraints collected by symbolic execution.

Such a hybrid approach takes into account the semantics
of configurations, but it is still more efficient than a purely
semantic-based approach because it uses SMT only when it
tries to locally search for a value for a single variable, which
may have side effects on other policies globally. Instead,
semantic-driven methods need to guarantee the feasible re-
pair has no side effects, which may result in much more
variables and constraints.

Templates can be defined manually or extracted automati-
cally. The key is to learn from historical repair experience,
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Figure 4: The workflow of ACR.

thereby raising the chances of resolving similar incidents.
Consequently, the effectiveness of using templates heavily
depends on the coverage of historical incidents. Theoreti-
cally, templates can potentially repair any type of error as
long as a suitable set of empirical repairs is provided.

Generation strategy consists of brute-force and search-
based. Brute-force systematically applies all change oper-
ators to all suspicious statements, defining the search space
as the Cartesian product space of suspicious statements and
change operators. In contrast, the search-based approach
uses a random or heuristic strategy to guide the application
of change operators.
One classical search-based approach is the genetic algo-

rithm [17, 22], which takes multiple iterations to evolve can-
didate updates. In each iteration, the algorithm performs a
mutation by applying a change operator to a suspicious state-
ment randomly selected from either the original program or
any one of the updated programs from previous iterations. In
addition, some methods [17] also randomly select two more
statements to perform a single-point crossover to produce
two more candidate updates.

Compared to brute-force, a major advantage of the search-
based approach is that statements to modify are not limited
to the original program, indicating that it can deal with er-
rors requiring to apply change operators multiple times. The
downside of the search-based approach is the uncertainty to
produce a feasible update. Therefore, ASR often exploits in-
formation from history repair [18] to guide the generation of
candidate fixes, thus increasing the probability of generating
a feasible update.

5 PRELIMINARY DESIGN

The Workflow. We propose localize-fix-validate, a vari-
ant of the generate-and-validate approach. The workflow is
shown in Figure 4, which generates the feasible update through
multiple iterations of evolution. Each iteration contains the
three steps of localize, fix, and validate.

Change Operators. For now, we manually define change
templates from historical repair experience, focusing on solv-
ing the types of misconfigurations shown in Table 1. Specifi-
cally, we associate a set of templates with each line of config-
uration, so that a relevant template can be selected if a line
is identified as suspicious. For example, Figure 3c shows the
templates (dark rectangle) if a policy-related configuration
is identified as suspicious (light rectangle). Each aims to re-
solve the error type in the Policy category from Table 1 and
is implemented by a set of atomic operators (circles). Note
that the suspicious configuration line may not always be the
line under repair because the "fix place" is determined by the
template we choose.

Search Space. The search space of our design is the set of
leaf nodes of a search forest (Figure 3c), each representing an
atomic change, e.g., symbolize a variable (circles) in the tem-
plates (dark rectangles) on a corresponding line of configura-
tion (light rectangles). Although an atomic change involves
solving a symbolic variable, the search space is smaller than
that of network synthesis because we only need to solve one
variable each time. Additionally, the heuristic use of tem-
plates avoids exploring irrelevant solutions, further reducing
the search space.

Fitness Function. Since a random strategy is not guaran-
teed to hit an effective change operator, we define a fitness
function to measure how good a candidate update is and
discard the one that seems not good. Specifically, the fitness
of an update is defined as the number of failed cases, and
candidate updates with high fitness (fitness above the pre-
vious iteration) are discarded. The fitness of an iteration is
defined as the largest fitness among the preserved updates.

Termination. As shown in Figure 4, the whole repair will
terminate in one of the three conditions: (1) a nonempty set
of feasible updates is found, i.e., the fitness value is 0; (2) no
more candidate updates can be generated, i.e., 𝑆 = ∅; and (3)
the iteration exceeds the limit, which is currently set to 500.

We show how it works using the example incident:

Step 1: Localize. Currently, we apply Tarantula [16] to lo-
calize suspicious configurations. Specifically, we compute
the suspiciousness score for every line of each router’s con-
figuration, based on the number of lines covered by passing
or failed test cases. Here, we only show the results for router
𝐴 in the right part of Figure 2b. The first three columns indi-
cate the coverage of different test cases, each identified by
the subnetwork name, and ‘•’ indicates that this line of con-
figuration is covered/executed. Since the routes for 10.0/16
caused the flapping, it is the only failed case. Thus, we can
compute the value of 𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑠) and 𝑝𝑎𝑠𝑠𝑒𝑑 (𝑠) for each state-
ment 𝑠 , and use Equation 1 to calculate the suspiciousness.
Here, we can get the highest suspiciousness is 0.67, with

218



Automatic Configuration Repair HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

both the value of 𝑓 𝑎𝑖𝑙𝑒𝑑 (𝑠) and 𝑝𝑎𝑠𝑠𝑒𝑑 (𝑠) being 1 on line 9.
The suspiciousness of each line is shown in the last column.

Step 2: Fix.We select the statements with the highest sus-
piciousness across all routers, and randomly select a pre-
defined template from the associated set to perform a change.
Suppose the templates corresponding to line 9 include peer
group and routing policy. As shown in Figure 3c, We can
choose the action of ‘Symbolize Z ’ on the right-most tem-
plate to modify the associate ip prefix-list, i.e., copying line
11 and replacing the ‘0.0.0.0 0’ with a symbolic variable,
denoted as 𝑣𝑎𝑟 .
We then identify the values of the symbolic variables by

performing local symbolism. Specifically, we first perform
symbolic execution on the network provenance, that is, we
use the precondition of each derivation in the provenance
as constraints on the variables, and collect the constraints 𝑃
that allow passed cases to satisfy intents and constraints 𝐹
that allow failed cases to violate intents. Then, we obtain the
values of the symbolic variables by using an SMT-solver to
solve an assignment that satisfies 𝑃 ∧¬𝐹 . Here, we will have
𝑃 : 10.70/16 ∈ 𝑣𝑎𝑟 ∧ 20.0/16 ∈ 𝑣𝑎𝑟 , and 𝐹 : 10.0/16 ∈ 𝑣𝑎𝑟 ,
so one possible 𝑣𝑎𝑟 can be {10.70/16, 20.0/16}. Accordingly,
the following lines can be inserted before line 11:

ip prefix-list default_all index 5 permit 10.70/16
ip prefix-list default_all index 5 permit 20.0/16

Step 3: Validate. Currently, we use DNA [29] in the valida-
tion to incrementally run test cases and count the number of
failed cases. As we argued in §2.3, merely modifying router
𝐴 will create a forwarding loop between 𝐶 and 𝑆 . DNA can
capture this loop and identify it as the only failed case. Since
this update does not increase the number of failed cases (still
1), this candidate will be kept for the next iteration.

Second iteration. Similar to the localization on router 𝐴,
We compute the suspiciousness for router 𝐶 . The line ‘peer
DCNSide route-policy Override_All import’ is one of the
most suspicious statements with value of 0.5 (not shown
here). Then, we can apply the same change operator in the
first iteration, i.e., inserting ‘ip prefix-list default_all index
5 permit 20.0/16’ in the corresponding prefix-list block. Due
to the change to the override policy, 𝐶 no longer selects 𝑆 as
the next hop for 10.0./16, thus the forwarding loop between
𝐶 and 𝑆 can be removed.

Such a preliminary design is scalable since the space for
possible updates is relatively small, and the symbolic execu-
tion based on provenance avoids path explosion. It is also
effective because the values that are solved by SMT con-
straints reduce the chances to introduce side effects, and
multiple rounds of evolution make it possible to handle the
misconfigurations at multiple places.

6 FUTURE DIRECTIONS

Hypotheses for ACR. Hypotheses are critical to automatic
repair. For example, based on the plastic surgery hypothesis
in ASR [6], tools can generate effective repairs by replicating
or substituting statement [17]. For ACR, we assume this
hypothesis still holds for DCNs, since devices in DCNs are
grouped into several roles, and devices with the same role often
have similar configurations. For other networks like WANs,
however, we still need to find other hypotheses, by analyzing
the characteristics of their configurations. Only by validating
these hypotheses, can we design effective ACR tools for a
broader range of networks.

Generating test suite for configurations. In the current
design, we leverage the specifications provided by opera-
tors to generate test cases. This approach works well for our
networks, but may not apply to networks without a specifi-
cation. For example, operators may not have specifications
for the configurations of a legacy network. Therefore, how
to automatically generate a test suite with high coverage,
so that ACR can apply SBFL to accurately identify the most
suspicious statements is an open question to ACR.

Computing suspiciousness scores for configuration.
In ASR, researchers have defined various types of suspi-
ciousness scores for SBFL, such as Tarantula, Ochiai [2],
Jaccard [8], etc. In this paper, we chose Tarantula for its
simplicity and effectiveness. While there may be other sus-
piciousness metrics that better suit the network settings,
finding them is left as future work.

Universal change operators. In this paper, we manually
define templates for our networks, based on historical in-
cidents. This may not generalize to the networks of other
service providers. It is worthwhile to explore a universal set
of syntactic change operators which can deal with a broader
range of networks, and cover even new incidents that have
never occurred before.

7 CONCLUSION
In this paper, we show some lessons from the real-world
incident experience, and propose the need and a preliminary
design for automatic configuration repair. This design ex-
plores the possibility of a new direction from the field of
software repair, called the localize-fix-validate method. We
show the feasibility of this method with a typical misconfig-
uration in a large service provider’s network.
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